首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
基础科学   1篇
  4篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
低温等离子体发生器工作参数优化   总被引:4,自引:4,他引:0  
低温等离子体(non-thermal plasma,NTP)发生器放电产生的活性物质可有效去除柴油机颗粒捕集器(diesel particular filter,DPF)中沉积的颗粒物(particulate matter,PM),而发生器的工作参数直接影响活性物质的浓度,选取合适的工作参数有利于活性物质的产生。该文以空气为气源,考察了放电区表面温度、放电电压、放电频率、空气流量4个因素对NTP发生器产生活性物质浓度的影响。以O3质量浓度作为试验指标,进行了正交试验设计,并对试验结果进行单因素影响规律的分析、极差分析以及方差分析。研究表明:较低的放电区表面温度和放电频率有利于O3的生成,O3质量浓度随着空气流量的增大先升高后降低,随放电电压的变化没有明显的增减趋势;放电区表面温度、空气流量为显著因素,放电电压和放电频率为不显著因素;各因素对试验结果影响的大小顺序为:空气流量>放电区表面温度>放电频率>放电电压;NTP反应器产生活性物质的较优组合是:放电区表面温度40℃、放电电压19 kV、放电频率7 kHz、空气流量5 L/min。研究结果对开发用于分解柴油机PM的NTP系统、优化NTP技术再生DPF的研究有重要的指导意义。  相似文献   
2.
为对比不同气源的介质阻挡放电型低温等离子体发生器的性能参数,分别以氧气和空气为气源,对发生器进行了静态对比试验,研究了放电电极面积、放电电压峰峰值、气体体积流量对放电功率、单周期电荷传输量、O_3浓度、O_3产量和O_3产率的影响。结果表明,当放电电极面积增大时,放电功率和单周期电荷传输量均线性增大,但空气源对应的放电功率和单周期电荷传输量及其增长速率较低;此时,氧气和空气源的O_3浓度整体呈上升趋势而O_3产率则呈下降趋势。当放电电压峰峰值增大时,氧气和空气源的放电功率和单周期电荷传输量均显著增大,且后期增大速率加快;O_3浓度均先升后降而O_3产率则逐渐减小,高浓度和高产率不可兼得。不同放电频率下,氧气源的最大臭氧浓度大于55 mg/L,空气源的最大臭氧质量浓度在4~8 mg/L之间。当气体体积流量增大时,氧气源的放电功率和单周期电荷传输量均先上升后趋于平缓,而空气源的放电功率和单周期电荷传输量则逐渐增大;氧气源的O_3浓度下降,O_3产量上升直至平缓,而空气源的O_3浓度则先增后减,O_3产量逐渐上升但上升速率放缓;氧气源和空气源的O_3产率均随气体体积流量的增大而缓慢上升。以氧气为气源时,气体体积流量不宜超过10 L/min;以空气为气源时,气体体积流量可选取为9 L/min左右。研究结果可为低温等离子体喷射系统优化及柴油机颗粒物捕集器的再生研究提供参考。  相似文献   
3.
为探究低温等离子体(non-thermal plasma,NTP)对柴油机排气中颗粒物(particulate matter,PM)不同组分的净化效果及作用规律。利用自行设计的NTP发生器以O2为气源生成NTP活性物质并喷射入柴油机排气中,在不同的反应温度下对PM进行净化试验。通过滤膜对反应前后的PM分别进行采样并进行热重分析。热重分析中采用变气氛的控制策略实现将PM中挥发性组分(volatile fraction,VF)和元素碳(elemental carbon,EC)失重过程的区分,并利用阿伦尼乌斯(Arrhenius)法对EC进行了氧化动力学分析。试验结果表明在反应温度为120℃时,NTP对PM的去除量最大,达到了66.79%,对EC的去除量也达到了各反应温度下的最大值。经NTP处理后,VF的挥发起始温度与终止温度无明显变化,PM中VF的质量分数下降了5.86%~13.90%,变化幅度随着反应温度的升高而提高。LVF(low volatile fraction)在VF中所占质量分数明显上升,表明NTP与VF中不同组分的反应速率有明显差异。EC在NTP的作用下氧化起始温度和终止温度降低了30~40℃。EC的表观活化能在NTP处理后从175.97~210.49 k J/mol降低至94.13~109.13 k J/mol。依据EC曲线变化可总结出反应温度的升高对NTP处理EC过程的影响主要体现在处于半氧化态的EC质量分数的上升。该文证实了NTP能够对柴油机排气中PM进行有效去除,为NTP应用于排气处理提供了试验依据。  相似文献   
4.
以压缩空气为气源,建立了低温等离子体(NTP)喷射系统再生废气再循环(EGR)冷却器的试验系统,在不同的再生温度下进行EGR冷却器的再生试验,通过测量再生过程中主要活性物质(NO2、O3)以及再生产物COx的变化情况,分析了再生温度对EGR冷却器再生的影响。试验结果表明:空气源NTP能在18~300℃的温度范围内实现EGR冷却器再生。再生过程中,O3和NO2均随着温度的升高而降低,在150℃时被完全消耗。再生过程产生的CO较少,故C1(CO中C的质量)的值较小,占C12(COx中C的质量)的比例不足1/8。而C2(CO2中C的质量)与C12的趋势趋于一致,均随着温度的升高先增加后减小,当再生温度为150℃时,C2和C12均达到较大值。当再生温度为150℃时,NTP产生的活性物质的利用率较高,去除积碳量较多,再生效果较好。  相似文献   
5.
排气余热辅助低温等离子体再生柴油机颗粒捕集器试验   总被引:4,自引:2,他引:2  
为探究低温等离子体(non-thermal plasma,NTP)对无外加热源的柴油机颗粒捕集器(diesel particulate filter,DPF)的再生过程与再生效果,搭建了排气余热辅助NTP再生DPF的试验系统。借助发动机停机后的排气余热,利用DBD(dielectric barrier discharge)型NTP发生器,对处于降温过程的DPF进行再生试验研究。结果表明:随着DPF温度的下降,NTP中O3的分解反应减弱,PM(particulate matter)氧化反应加剧,DPF内部出现温度不降反升的现象,氧化区域自DPF前端逐渐向后端延伸,DPF径向中点处氧化反应最为剧烈,DPF轴向剖面上残余积碳呈现?形。再生后DPF内部残余积碳中可溶性有机成分SOF(soluble organic fraction)明显减少,且NTP处理能够降低PM中SOF及DS(dry soot)的表观活化能。整个再生过程中,DPF内部大量积碳被氧化去除。排气余热辅助的NTP再生技术,实现了对无外加热源的DPF的有效再生,使得DPF排气背压下降达69%。该文证实了排气余热辅助NTP再生DPF的可行性,为NTP再生DPF技术的应用提供了试验依据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号