首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
  国内免费   7篇
基础科学   16篇
  8篇
综合类   5篇
农作物   1篇
植物保护   4篇
  2024年   2篇
  2023年   8篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
研究生育期土壤水分下限调控和施肥对陕北榆林地区滴灌马铃薯生长、品质和水肥利用的影响,以期探寻马铃薯优质高产的水肥调控模式。以马铃薯紫花白为材料,分别在苗期、块茎形成期、块茎膨大期、淀粉积累期、成熟期设置3个土壤水分调控下限水平:W1(55%、60%、65%、55%、55%)、W2(65%、70%、75%、65%、65%)、W3(75%、80%、85%、75%、75%),4个施肥水平N-P_2O_5-K_2O (kg·hm~(-2))分别为F1(100-40-150 kg·hm~(-2))、F2(150-60-225 kg·hm~(-2))、F3(200-80-300 kg·hm~(-2))、F4(250-100-375 kg·hm~(-2)),共12个处理,在生育期内对马铃薯生长、产量及品质等指标进行观测,分析马铃薯各指标对水肥的响应机制。结果表明:(1)在同一施肥水平下,W2灌水处理的马铃薯生长、产量、品质、水肥利用效率(WUE)均显著高于W1和W3处理。W2处理的平均产量为43 187.15 kg·hm~(-2),比W1和W3分别增加了24.59%和5.26%,淀粉和维生素C含量分别增加了15.32%和6.37%,8.04%和4.66%,WUE分别增加了15.53%和7.54%,肥料偏生产力(PFP)分别增加了21.65%和4.41%。(2)在同一灌水水平下,F3施肥处理的马铃薯生长、产量、WUE均显著高于F1、F2和F4处理,淀粉含量和维生素C含量在F2处理最高。F3处理的平均产量为44 691.32 kg·hm~(-2),比F1、F2和F4处理分别增加了41.79%、10.98%和6.34%。WUE随施肥量的增加均呈抛物线变化趋势,PFP随施肥量增加呈减小趋势,F1处理的PFP平均为108.69 kg·kg~(-1),比F2、F3和F4处理分别显著增加了17.41%、41.06%和87.50%。(3)运用主成分分析法评价马铃薯品质表明,F3W2处理排名第一,是榆林地区马铃薯优质高产的最优水肥组合。  相似文献   
2.
针对南疆地区水资源短缺、作物水分利用效率低等问题,以棉花为试验材料进行田间小区试验,在棉花现蕾期、开花期以及结铃期分别设置3个亏缺灌溉水平(W1:50%ETc,W2:65%ETc,W3:80%ETc,ETc为作物蒸发蒸腾量),以全生育期100%ETc灌溉处理为对照(CK),研究膜下滴灌条件下,不同生育期亏缺灌溉对棉花生长、产量、氮素吸收和水分利用效率的影响.结果表明:现蕾期亏水对棉花株高、叶面积指数、地上干物质生长、氮素吸收和产量有不同程度的抑制效应,但复水后补偿效应显著,其中轻度亏水(W3)在籽棉产量减少3.48%的条件下,WUE高达1.57 kg/m3,显著高于CK的1.48 kg/m3;开花期亏水,棉花的各项生长指标均有显著降低,复水后补偿效应不显著,不利于棉花生长发育;结铃期亏水对棉花地上干物质累积、氮素吸收和产量均有显著的抑制效应,但在W2和W3水平下,WUE均达1.51 kg/m3.综合考虑在保证棉花产量的同时达到节水增产的目的,可在棉花蕾期进行80%ETc灌水,其他生育阶段实施充分灌溉,来控制营养生长,促进生殖生长,获得更高的水分利用效率.  相似文献   
3.
灌水量和滴灌施肥方式对温室黄瓜产量和养分吸收的影响   总被引:5,自引:1,他引:4  
为揭示水肥对温室黄瓜产量和养分吸收的影响机制,通过温室试验,研究了2种不同灌水量和4种不同滴灌施肥方式对温室黄瓜产量和养分吸收的影响。结果表明,灌水量和滴灌施肥比例对黄瓜干物质量、产量和肥料偏生产力均有显著影响(P0.05)。Z100处理的黄瓜产量、干物质量、水分利用效率比Z0处理分别增加15.3%、16.8%、19.1%。W2Z100处理水分利用效率最高,为47.71 kg/m3,在产量仅比W1Z100处理低3.32%的情况下,节水25%。温室黄瓜植株对氮、磷、钾的吸收量和肥料偏生产力均随灌水量和滴灌施肥比例的增加而增加。Z100处理平均氮、磷、钾素吸收量分别比Z0处理高21.05%、21.89%和22.2%,Z100处理平均肥料偏生产力分别比Z66、Z33、Z0处理高2.66%、7.37%、15.34%。不同滴灌施肥比例对氮、磷、钾的利用效率均有极显著影响(P0.01),对吸收效率有显著影响(P0.05)。水肥交互作用在黄瓜植株对氮、磷、钾的利用效率上有显著影响(P0.05),对氮钾的吸收效率有显著影响(P0.05)。采用"少量多次"的滴灌施肥模式增产效果显著,肥料利用效率较高。综合考虑,W2Z100(75%ET0,100%滴灌施肥)处理在节约大量灌水量的情况下,取得较高的产量和水分利用效率,且肥料偏生产力较高,能获得较大的经济效益,是比较适宜的滴灌施肥水肥组合。  相似文献   
4.
水氮供应对温室辣椒生长、产量和品质的影响   总被引:2,自引:0,他引:2  
研究不同水氮供应对温室辣椒生长、产量和品质的影响,以期探索提高温室辣椒高效生产的水氮管理模式。利用温室小区灌溉试验,以‘陇椒2号’为供试品种,设置3个灌水水平:低水W60(60%ETc)、中水W75(75%ETc)和高水W90(90%ETc),全生育期灌水量分别为132、156和180 mm;3个施氮水平:低氮N150(150kg·hm~(-2))、中氮N225(225kg·hm~(-2))和高氮N300(300kg·hm~(-2)),共9个处理。在生育期内对辣椒的各生长指标进行观测,并统计产量、产量构成及测定品质等指标。结果表明:灌水量、施氮量及水氮交互作用对温室辣椒生长指标、干物质积累、水氮利用效率、产量及品质都有显著影响;辣椒产量以W75N225处理最高,为52.87t·hm~(-2),较其他处理增产4.31%~88.63%,且水分利用效率(WUE)提高11.74%~59.91%;辣椒干物质积累量以W90N300处理最高,为6 986.57kg·hm~(-2),与W75N225处理差异不显著;果实的干物质积累量以W75N225处理最高,为4 221.58kg·hm~(-2),较其他处理增加7.35%~109.38%;施氮量对辣椒株高影响显著,W90处理下N300和N225处理与N150处理相比,株高增幅分别为16.09%和10.57%,但茎粗之间无显著差异。W75N225处理辣椒果实品质较高,与其他处理相比,维生素C、可溶性蛋白质和可溶性糖质量分数分别增加3.95%~12.88%、-3.09%~14.12%和-0.66%~15.33%,硝酸盐质量分数较W75N300处理降低24.49%。综合分析产量、品质及水氮利用效率可知,W75N225处理为关中地区温室辣椒最适的水氮组合。  相似文献   
5.
通过研究不同灌水量和地表覆膜条件对柱状苹果树的生长生理及蒸散特征的综合影响,探寻适合苹果树生长且水分利用效率高的灌水量和保水措施。通过遮雨棚下可称量式蒸渗桶试验,设置4个灌水水平:60%ETC(W1)、80%ETC(W2)、100%ETC(W3)和120%ETC(W4);地表覆膜处理分别为有覆盖(M)和无覆盖(NM),分析柱状苹果树的干物质量、光合速率、蒸腾速率和阶段耗水情况对不同灌水量和地表覆盖条件的响应规律。结果表明,干物质量随灌水量增加而增加,且M处理可促进干物质量的积累;净光合速率、蒸腾速率和气孔导度均随着灌水量的增加而升高。不同生育期净光合速率和蒸腾速率由大到小依次均为:果实膨大期、果实成熟期、开花座果期、叶变期。相同灌水量和地表覆盖处理条件下,不同时刻净光合速率由大到小依次为10:00、13:00、08:00,蒸腾速率由大到小依次为13:00、10:00、08:00,气孔导度由大到小依次为10:00、08:00、13:00。瞬时水分利用效率(LWUE)最大值和最小值分别出现在W2处理10:00(4.52μmol/mmol)和W4处理13:00(2.62μmol/mmol);全生育期总蒸散量随着灌水量增加而增加,NM处理较M处理增加11.02%~16.35%。开花座果期、果实膨大期、果实成熟期和叶变期的耗水强度分别为3.29~4.36 mm/d、2.40~4.85 mm/d、0.83~1.79 mm/d和0.77~1.53 mm/d,耗水模数分别为19.34%~27.40%、55.99%~61.41%、8.62%~12.63%和5.85%~7.24%。最终得出120%ETC灌水量和地表覆膜条件有利于改善柱状苹果树的生长和生理状况,但80%ETC处理水分利用效率最高。地表覆膜不仅促进苹果树生长而且降低了土壤蒸发量,具有一定的保水作用。因此,MW2处理为相对节水的灌溉模式。  相似文献   
6.
基于常规气象资料估算南方地区日辐射总量方法比较   总被引:2,自引:0,他引:2  
日地表总辐射量(Rs)是作物生长模型和参考作物蒸发蒸腾量估算的重要基础数据,但我国只有约1/20的气象站能够直接观测Rs。由于气温资料很容易获得,使用基于基本气象资料的经验模型是估算Rs的常用方法。以1982—2014年南方20个气象站的气象资料为基础,对Bristow-Campbell(B-C)方法和Hargreaves(Harg)方法各6种不同形式重新进行了参数率定,并对以上方法和支持向量机15种参数输入形式进行了适用性评价,结果表明:支持向量机模型整体好于B-C方法和Harg方法。其中,以最高温度(Tmax)、最低温度(Tmin)、相对湿度(RH)和降水量(P)为输入变量的支持向量机模型精度最高,其20站平均R2达到0.80、RMSE平均为3.20 MJ/(m2·d),且在包含降雨量资料后,不存在Rs为负或大于地外总辐射量(Ra)的问题。仅有温度资料时,支持向量机模型的20站平均R2为0.74,RMSE为3.72 MJ/(m2·d)。不同输入变量对支持向量机模型预报Rs的精度影响不同,输入变量为Tmax和Tmin优于输入变量为ΔT;而除温度资料外,当拥有相对湿度和降水量资料时,模型优劣依次表现为RH+P、RH、P。经验模型中B-C方法的M1和M3以及Harg方法的M10和M12模型精度较好,其R2为0.69~0.70、RMSE在4.00 MJ/(m2·d)左右,但M10和M12模型对气象资料要求更高,除日温度差外,需要降水量资料,同时还存在有降水时日Rs严重高估或负值问题。  相似文献   
7.
为及时获取大田作物根区土壤含水率(Soil moisture content, SMC),实现精准灌溉,运用高光谱技术,通过连续2年(2019—2020年)田间试验采集了冬小麦拔节期不同土层深度SMC及高光谱数据,构建了3类植被指数(蓝、黄和红边面积等三边光谱参数,与冬小麦根区SMC相关性最高的任意两波段植被指数和前人研究与作物参数相关性较好的经验植被指数)并筛选与各土层深度SMC相关系数最高的植被指数,随后将筛选后的植被指数作为模型输入,分别采用随机森林(Random forest, RF)、反向神经网络(Back propagation neural network, BPNN)和极限学习机(Extreme learning machine, ELM)构建冬小麦拔节期不同土层深度SMC估算模型。结果表明,绝大部分三边参数、任意两波段植被指数和经验植被指数在深度0~20 cm土层的SMC相关系数较20~40 cm和40~60 cm更高,在深度0~20 cm土层两波段组合构建的光谱指数与SMC的相关系数最高,均超过0.8,其中RI与SMC的相关系数最高,为0.851,其波长组合为675...  相似文献   
8.
为在田间管理中对作物产量进行估测,通过两年大田试验收集了大豆生殖生长期的高光谱数据及产量数据,基于各生育期一阶微分光谱反射率计算了7个光谱指数:比值指数(Ratio index,RI)、差值指数(Difference index,DI)、归一化光谱指数(Normalized difference vegetation index,NDVI)、土壤调整光谱指数(Soil-adjusted iegetation index,SAVI)、三角光谱指数(Triangular vegetation index,TVI)、改进红边归一光谱指数(Modified normalized difference index,mNDI)和改进红边比值光谱指数(Modified simple ratio,mSR),使用相关矩阵法将光谱指数与大豆产量数据进行相关性分析并提取最佳波长组合,随后将计算结果作为与大豆产量相关的最佳光谱指数,最后将各生育期筛选出的与大豆产量相关系数最高的5个光谱指数作为模型输入变量,利用支持向量机(Support vector machine,SVM)、随机森林(Random forest,RF)和反向神经网络(Back propagation neural network,BPNN)构建大豆产量估算模型并进行验证。结果表明,各生育期(全花期(R2)、全荚期(R4)和鼓粒期(R6))计算的光谱指数与产量的相关系数均高于0.6,相关性较好,其中全荚期的光谱指数FDmSR与大豆产量的相关系数最高,达到0.717;大豆产量最优估算模型的方法是输入变量为全荚期构建的一阶微分光谱指数和RF组合的建模方法,模型验证集R2为0.85,RMSE和MRE分别为272.80kg/hm2和5.12%。本研究成果可为基于高光谱遥感技术的作物产量估测提供理论依据和应用参考。  相似文献   
9.
为探讨分数阶微分(fractional-order differentiation,FOD)技术联合光谱指数改善高光谱反演冬小麦根域土壤含水率(soil moisture content,SMC)的效果,该研究以冬小麦为研究对象,测取高光谱反射率和土壤含水率数据,将高光谱反射率经Savitzky-Golay(SG)平滑处理后计算典型光谱指数以此构建偏最小二乘回归(partial least squares regression,PLSR)、随机森林(random forest,RF)和BP神经网络(back propagation neural network,BPNN)3种土壤含水率反演模型;将高光谱反射率进行0~2.0阶(步长为0.2)的分数阶微分处理后计算比值指数(ratio index,RI)和归一化指数(normalized difference index,NDI),分析不同阶的RI、NDI与SMC之间的二维相关性,筛选得出敏感光谱指数并分组,以此构建3种反演模型(PLSR、RF和BPNN)。结果表明:不同典型光谱指数与土壤含水率的相关性存在很大差异,相关系数波动范围在0....  相似文献   
10.
基于不同水肥组合的春玉米相对根长密度分布模型   总被引:5,自引:3,他引:2  
根系分布是模拟作物生长与土壤水分和养分运移,以及制定合理的灌溉制度和作物管理不可缺少的参数之一。现有的根系分布模型大多是于单一灌水和施肥条件下建立的,因此研究不同水肥组合下滴灌玉米的根系分布模型更具有实际意义。利用2a的田间小区试验,以春玉米"强盛51号"为试验材料,设置4个灌水水平,2015年和2016年分别为I_(60)(60%ET_c)、I_(75)(75%ET_c)、I_(90)(90%ET_c)、I_(105)(105%ET_c)和I_(60)(60%ET_c)、I_(80)(80%ET_c)、I_(100)(100%ET_c)、I_(120)(120%ET_c),ET_c为玉米需水量;4个N-P_2O_5-K_2O kg/hm~2施肥水平:F60(60-30-30)、F120(120-60-60)、F180(180-90-90)和F240(240-120-120),共16个处理。在春玉米灌浆期对根长密度(root length density,RLD)进行了测定,建立了不同水肥供应条件下相对根长密度(NRLD,normalized root length density)分布模型。结果表明:春玉米NRLD与土壤剖面相对深度呈现显著的三阶多项式函数关系,且三次项参数(R0)与灌水量和施肥量呈现二元二次多项式函数关系,决定系数(R~2)为0.84;验证结果显示,I_(60)、I_(75)、I_(90)和I_(105)灌水水平下NRLD模拟值与实测值均方根误差(RMSE)分别为0.20、0.16、0.16和0.17,标准化均方根误差(n-RMSE)分别为32%、27%、14%和17%,且R~2达0.95以上;基于NRLD分布模型估算各相对深度RLD分布比例,估算结果表明地表至相对根系扎深1/3处根长占总根长比例平均达73.6%,地表至相对根系扎深1/2处根长占总根长比例平均达82.8%。该模型对于指导大田春玉米灌溉施肥管理具有重要的理论意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号