首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   803篇
  免费   94篇
  国内免费   40篇
林业   227篇
农学   29篇
基础科学   17篇
  411篇
综合类   183篇
农作物   16篇
水产渔业   4篇
畜牧兽医   25篇
园艺   9篇
植物保护   16篇
  2024年   8篇
  2023年   33篇
  2022年   43篇
  2021年   35篇
  2020年   28篇
  2019年   18篇
  2018年   24篇
  2017年   51篇
  2016年   49篇
  2015年   34篇
  2014年   40篇
  2013年   84篇
  2012年   66篇
  2011年   90篇
  2010年   42篇
  2009年   72篇
  2008年   47篇
  2007年   46篇
  2006年   39篇
  2005年   31篇
  2004年   22篇
  2003年   13篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1998年   8篇
  1996年   3篇
  1991年   1篇
  1990年   1篇
排序方式: 共有937条查询结果,搜索用时 15 毫秒
1.
There are few reliable data sets to inspire confidence in policymakers that soil organic carbon (SOC) can be measured on farms. We worked with farmers in the Tamar Valley region of southwest England to select sampling sites under similar conditions (soil type, aspect and slope) and management types. Topsoils (2–15 cm) were sampled in autumn 2015, and percentage soil organic matter (%SOM) was determined by loss on ignition and used to calculate %SOC. We also used the stability of macroaggregates in cold water (WSA) (‘soil slaking’) as a measure of ‘soil health’ and investigated its relationship with SOC in the clay‐rich soils. %SOM was significantly different between management types in the order woodland (11.1%) = permanent pasture (9.5%) > ley‐arable rotation (7.7%) = arable (7.3%). This related directly to SOC stocks that were larger in fields under permanent pasture and woodland compared with those under arable or ley‐arable rotation whether corrected for clay content (F = 8.500, p < .0001) or not (F = 8.516, p < .0001). WSA scores were strongly correlated with SOC content whether corrected for clay content (SOCadj R2 = .571, p < .0001) or not (SOCunadj R2 = 0.490, p = .002). Time since tillage controlled SOC stocks and WSA scores, accounting for 75.5% and 51.3% of the total variation, respectively. We conclude that (1) SOC can be reliably measured in farmed soils using accepted protocols and related to land management and (2) WSA scores can be rapidly measured in clay soils and related to SOC stocks and soil management.  相似文献   
2.
3.
4.
Soil organic carbon(SOC) plays a key role in improving soil quality and optimizing crop yield. Yet little is known about the fate of macroaggregates(0.25 mm) under long-term fertilization and their relative importance in SOC sequestration in reclaimed calcareous soil. Therefore, the effects of mineral fertilizers and organic manure on the mechanisms of organic carbon(OC) stabilization in macroaggregates were investigated in this study. Four treatments were used: unfertilized control(CK), mineral fertilizer(NPK), compost chicken manure alone(M), and mineral fertilizers plus manure(MNPK). Samples from the 0–20 cm layer of soil receiving 11-year-long fertilization were separated into four fractions based on the macroaggregates present(unprotected coarse and fine particulate organic matter, cPOM and fPOM; physically protected intra-microaggregate POM, i POM; and biochemically protected mineral associated OM, MOM) by the physical fractionation method. Compared with the control, the long-term application of NPK had little effect on SOC content, total nitrogen(TN) content, and OC and TN contents of macroaggregate fractions. In contrast, incorporation of organic manure(MNPK) significantly increased SOC(45.7%) and TN(24.3%) contents. Application of MNPK increased OC contents within macroaggregate-extracted fractions of cPOM(292.2%), fPOM(136.0%) and iPOM(124.0%), and TN contents within cPOM(607.1%), fPOM(242.5%) and iPOM(127.6%), but not the mineral associated organic carbon(MOM-C) and nitrogen(MOM-N) contents. Unprotected C fractions were more strongly and positively correlated with SOC increase than protected C fractions, especially for cPOM-C, indicating that SOC sequestration mainly occurred via cPOM-C in the studied calcareous soil. In conclusion, MNPK increased the quantity and stability of SOC by increasing the contents of cPOM-C and cPOM-N, suggesting that this management practice(MNPK) is an effective strategy to develop sustainable agriculture.  相似文献   
5.
以项目为载体的林业碳汇作为重要交易标的,已经在国内外主要的碳交易市场体系中频繁出现。但是,由于不同碳市场产生的背景、主要目标及交易规则的差异,对参与交易的林业碳汇项目开发标准与具体要求不尽相同。合格的可交易林业碳汇在全球林业碳汇市场中所占份额依然很小,林业碳汇尚未发挥其应有的作用与潜力。文中在对国内外林业碳汇市场发展概况进行简要梳理并对目前主要林业碳汇项目类型及其特征进行比较分析的基础上,结合我国碳市场发展与森林经营特点,提出了我国林业碳汇的未来发展策略:一是立足国内,建立多元化林业碳汇市场;二是立足资源优势,重点发展森林经营碳汇项目;三是加强林业基础数据与信息化建设,降低林业碳汇项目交易成本;四是加强不同碳市场衔接与协同,并积极参与国际市场交易。  相似文献   
6.
The seasonal trend of plant carbon dioxide (CO2) sequestration is related to the photosynthetic activity, which in turn changes in response to environmental conditions. Great interest has turned to the CO2 sequestration (CS) potential of temperate forests which play an important role in global carbon (C) cycle contributing to the lowering of atmospheric CO2 concentration. In such context, the CS of an unmanaged old broad-leaf deciduous forest developing inside a Strict Nature Reserve, and its variations during the year were analyzed considering the monthly variations of leaf area index (LAI) and net photosynthetic rates (NP). Overall, the total yearly CS of the forest was 141 Mg CO2 ha?1 year?1 with the highest CS value monitored in June (405 Mg CO2 month?1) due to the highest LAI (5.0 ± 0.8 m2 m?2) and a high NP in all the broadleaf species. The first CS decline was observed in August due to the more stressful climatic conditions that constrained NP rates. Overall, the total CS of the forest reflects the good ecological health of the ecosystem due to its conservative management.  相似文献   
7.
Biochar is a product of pyrolysis of biomass in the absence of oxygen and has a high potential to sequester carbon into more stable soil organic carbon (OC). Despite the large number of studies on biochar and soil properties, few studies have investigated the effects of biochar in contrasting soils. The current research was conducted to evaluate the effects of different biochar levels (0 (as control), 1% and 3%) on several soil physiochemical properties and nitrate leaching in two soil types (loamy sand and clay) under greenhouse conditions and wet-dry cycles. The experiment was performed using a randomized design with three levels of biochar produced from rice husks at 500 °C in three replications. Cation exchange capacity increased significantly, by 20% and 30% in 1% and 3% biochar-amended loamy sand soil, respectively, and increases were 9% and 19% in 1% and 3% biochar-amended clay soil, respectively. Loamy sand soil did not show improvement in aggregate indices, including mean weight diameter, geometric mean diameter, water stable aggregates and fractal dimension, which was contrary to the results for the clay soil. Rice husk biochar application at the both rates decreased nitrate leaching in the clay soil more than in the loamy sand. Our study highlights the importance of soil type in determining the value of biochar as a soil amendment to improve soil properties, particularly soil aggregation and reduced nitrate leaching. The benefits of the biochar in the clay soil were greater than in the loamy sand soil.  相似文献   
8.
农业生产是温室气体排放第二大排放源,降低农业生产的碳排放具有意义重大。本文梳理了种植生产过程中碳排放相关的文献,发现种植过程产生碳排放的主要因素之一是化肥的生产和使用。通过优化秸秆和肥料利用模式成为化肥减施和替代的重要途径,综合考虑了农田碳排放和土壤固碳,为进一步研究旱作农田减排措施提供参考。  相似文献   
9.
森林经营在增强二氧化碳吸收方面具有重要作用,在全球气候变化背景下,本文阐述了《联 合国气候变化框架公约》中我国的履约目标,并评估了 2005 年和 2010 年广东省土地利用变化和林业领 域的固碳量。结果显示广东省 2005 年森林生物量生长碳吸收合计总量为 47.02×109 kg 二氧化碳当量,乔 木林固碳占总固碳量的 88.87%,采伐消耗温室气体排放 11.47×109 kg 二氧化碳当量,采伐消耗温室气 体排放二氧化碳当量占总排放量的 76.12%。2010 年固碳量增长 11.68%,采伐消耗温室气体排放增加了 19.85%。通过对比分析,探讨了广东省林业碳汇的提升潜力及方向。  相似文献   
10.
Long‐term no‐tillage management and crop residue amendments to soil were identified as an effective measure to increase soil organic carbon (SOC). The SOC content, SOC stock (SOCs), soil carbon sequestration rate (CSR), and carbon pool management index (CPMI) were measured. A stable isotopic approach was used to evaluate the contributions of wheat and maize residues to SOC at a long‐term experimental site. We hypothesized that under no‐tillage conditions, straw retention quantity would affect soil carbon sequestration differently in surface and deep soil, and the contribution of C3 and C4 crops to soil carbon sequestration would be different. This study involved four maize straw returning treatments, which included no maize straw returning (NT‐0), 0.5 m (from the soil surface) maize straw returning (NT‐0.5), 1 m maize straw returning (NT‐1), and whole maize straw returning (NT‐W). The results showed that in the 0–20 cm soil layer, the SOC content, SOCs, CSR and CPMI of the NT‐W were highest after 14 years of no‐tillage management, and there were obvious differences among the four treatments. However, the SOC, SOCs, and CSR of the NT‐0.5 and NT‐W were the highest and lowest in 20–100 cm, respectively. The value of δ13C showed an obviously vertical variability that ranged from –22.01‰ (NT‐1) in the 0–20 cm layer to –18.27‰ (NT‐0.5) in the 60–80 cm layer, with enriched δ13C in the 60–80 cm (NT‐0.5 and NT‐1) and 80–100 cm (NT‐0 and NT‐W) layers. The contributions of the wheat and maize‐derived SOC of the NT‐0.5, NT‐1 and NT‐W increased by 11.4, 29.5 and 56.3% and by 10.7, 15.1 and 40.1%, relative to those in the NT‐0 treatment in the 0–20 cm soil layer, respectively. In conclusion, there was no apparent difference in total SOC sequestration between the NT‐0.5, NT‐1, and NT‐W treatments in the 0–100 cm soil layer. The contribution of wheat‐derived SOC was higher than that of maize‐derived SOC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号