首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   37篇
  国内免费   11篇
林业   58篇
农学   2篇
基础科学   61篇
  21篇
综合类   68篇
农作物   1篇
畜牧兽医   6篇
园艺   1篇
植物保护   3篇
  2023年   32篇
  2022年   28篇
  2021年   29篇
  2020年   29篇
  2019年   13篇
  2018年   9篇
  2017年   9篇
  2016年   12篇
  2015年   11篇
  2014年   14篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
排序方式: 共有221条查询结果,搜索用时 31 毫秒
1.
利用东北林区云冷杉林、落叶松林、樟子松林、红松林、栎树林、桦树林、杨树林、榆树林、椴树林和水胡黄林10种森林类型的1947个样地的激光雷达数据和地面实测蓄积量数据,首先通过多元线性回归和非线性回归方法,分别建立基于机载激光雷达数据的森林蓄积量回归估计模型,并通过对比分析,确定统一形式的基础回归模型;然后利用哑变量建模方法,建立基于不同森林类型参数和相同激光雷达变量的蓄积量模型。结果表明,研究建立的10种森林类型的线性蓄积量回归模型的解释变量个数在2~7之间,确定系数在0.460~0.858之间;非线性蓄积量回归模型的解释变量个数在2~4之间,确定系数在0.461~0.846之间。基于点云平均高度和平均强度建立的10种森林类型的二元蓄积量模型(研究称之为标准模型),其确定系数在0.440~0.815之间,平均预估误差在2.88%~4.42%之间,平均百分标准误差在16.76%~25.52%之间,预估精度基本达到森林资源规划设计调查技术规定要求。依据研究建立的10种森林类型的蓄积量模型,可以编制基于激光雷达数据的航空林分材积表,在森林资源调查实践中推广应用。  相似文献   
2.
以东北虎豹国家公园范围内的针叶纯林为研究对象,结合2018年9月机载LiDAR点云数据和同步地面调查数据,提取半径为15 m的圆形采样尺度下的LiDAR点云特征变量为数据基础,采用BP神经网络算法、逐步回归法分别构建林分算术平均高模型和林分加权平均高模型,实现对林分平均高的估测.其中在利用BP神经网络算法构建模型时分别选择了贝叶斯正则化算法和L-M算法作为神经网络训练算法.结果表明:BP神经网络算法对数据具有更好地解释能力,其构建的林分平均高模型相关系数(R2)均在87%以上,高于逐步回归法构建的林分平均树高模型;林分加权平均高模型精度更高,用样地加权平均高作为实测值时,采用逐步回归算法、BP神经网络L-M算法、BP神经网络贝叶斯正则化算法构建的模型的检验样地数据的决定系数(R2)分别为0.858、0.919、0.908,树高估测精度(P)分别为88.6%、89.8%、91.2%,与以林分算术平均高作为实测值构建的估测模型相比,决定系数(R2)分别提升了4.9%、3.7%、3.4%,估测精度(P)分别提升了2.9%、2.4%、1.5%;BP神经网络的不同训练函数之间无明显性能差异,两种不同训练方法构建的林分平均高模型的决定系数R2及树高估测精度(P)略有差异,但整体相差较小.  相似文献   
3.
基于激光雷达的巡检机器人导航系统研究   总被引:1,自引:0,他引:1  
智能巡检机器人能够高效、可靠地完成巡检任务,降低工作人员的劳动强度,准确、稳定的导航定位是巡检机器人执行巡检任务的基础。本文研究了基于激光雷达的巡检机器人导航系统,可实现机器人在室内外环境下的地图建立、路径规划和导航定位。导航系统由远程监控平台与巡检机器人组成,远程监控平台发布巡检任务、监控机器人状态、查询与存储检测数据,巡检机器人可实现自主导航定位、遍历检测点、执行数据采集等巡检任务,二者通过无线网络实现远程数据交互。融合激光雷达与编码器信息,使用高鲁棒性Gmapping算法建立二维环境地图。根据地图与检测点信息,采用分支界定算法搜索最优巡检路线,以减少巡检时间和能源消耗。使用自适应蒙特卡罗定位(AMCL)算法估计机器人位置和姿态,结合巡检路线,进行导航定位。根据横向偏差与航向偏差,通过经典的PID算法完成机器人驱动控制。机器人搭载可见光相机与红外相机,可对目标进行可见光通道与红外通道的融合图像检测。对巡检机器人进行了室内导航定位试验,试验结果表明,在1 m/s的速度下,位置与航向偏差的平均绝对误差(MAE)分别小于5 cm和1.1°,标准差(SD)分别小于5 cm和1.5°,能够满足巡检导航定位的要求。  相似文献   
4.
地基激光雷达提取单木冠层结构因子研究   总被引:5,自引:0,他引:5  
在传统森林计测中,由于树木冠层的形态各异、结构复杂,往往难以精确获取结构因子。本文以地基激光雷达为工具,通过对单木扫描获取点云数据,基于球极平面投影和Lambert方位角等面积投影法计算冠层孔隙度,运用不规则面投影法和体元法提取树冠的体积和表面积,并对结果进行了对比分析。选取北京林业大学校园内6株立木为研究对象,结果表明,对于冠层孔隙度,球极平面投影的结果均小于Lambert方位角等面积投影,平均误差为0.03;对于体积和表面积,运用不规则面投影法和体元法得到树冠体积相对误差为5.32%~12.43%,平均相对误差为9.29%,提取的树冠表面积的相对误差为1.40%~5.21%,平均相对误差为3.33%。2种方法得到的结果差别不是很显著。因此利用地基激光雷达获取点云数据,通过对单木一次扫描提取冠层孔隙度、树冠体积和表面积,为计算树木的三维绿量、生物量、光合作用能力等提供了更可靠的数据支持。  相似文献   
5.
无人机机载激光雷达提取果树单木树冠信息   总被引:5,自引:3,他引:2  
定株管理是未来果园精准生产管理的趋势,果树单木树冠信息的提取是定株管理的关键。该研究利用无人机采集的苹果园激光探测与测量数据(Light Detection and Ranging,LiDAR)检测和测量每棵果树的树冠面积和树冠直径,并评价空间分辨率对于果树单木树冠检测与提取的影响。该方法主要包括使用反距离权重插值法间接生成冠层高度模型(Canopy Height Model,CHM);使用局部极大值滤波算法和标记控制分水岭分割算法(Marked-Controlled Watered Segmentation,MCWS)对果树进行单木树冠检测与提取,通过与参考数据的比较,评估了该方法的精度,并定量分析了空间分辨率对于单木树冠检测与信息提取结果的敏感性。结果表明,该方法有效地实现果树单木树冠检测与信息提取,代表果树检测精度的F1得分为94.86%,树冠轮廓提取准确率为86.39%,树冠面积的提取数据集和参考数据集的线性拟合结果决定系数和归一化均方根误差分别为0.81和20.56%,树冠直径的提取数据集和参考数据集的线性拟合结果决定系数和归一化均方根误差分别为0.85和14.79%,树冠面积和直径不同程度地被高估。此外,冠层高度模型的空间分辨率接近果树平均树冠直径的1/10时精度最高,可以有效检测果树单木树冠及提取树冠轮廓,从而准确提取果树单木树冠信息。  相似文献   
6.
最小二乘法与SVM组合的林果行间自主导航方法   总被引:1,自引:1,他引:0  
为了提高作业装备在果园与树林行间的自主导航性能,该研究提出一种基于最小二乘法与支持向量机(Support Vector Machine,SVM)融合的树行识别与导航方法。研究采用履带式小型喷雾机为作业平台,通过低成本的单线激光雷达获取果园或树林环境点云数据,融合姿态传感器进行数据校正,利用最小二乘法拟合识别树行,结合SVM算法,预测果园行间中心线,作为作业平台的参考导航线。在桃园、柑橘园、松树林3种不同的行间环境对导航算法进行了测试验证,并以松树林导航为例进行分析。试验结果表明:该导航算法最大横向偏差为107.7 mm,横向偏差绝对平均值不超过17.8 mm,结合作业平台的行驶轨迹,说明该导航算法能够保证作业平台沿树行行间中心线自主导航行驶,能够满足作业装备在果园与树林行间自主导航作业的需求。  相似文献   
7.
基于不同密度LiDAR数据DEM构建研究   总被引:1,自引:0,他引:1  
为了进一步提升数字高程模型构建效率,同时降低数据获取成本,以机载LiDAR数据为基础,通过对机载LiDAR数据进行处理得到地面点并对地面点进行抽取操作以获得不同密度地面点数据并插值生成DEM,最终获得不同抽取率下DEM数据生成的精度。结果表明,对于城区而言,随着点云密度的下降DEM生成精度RMSE从0.109 m逐渐增大到0.691 m;对于草地而言,RMSE则从0.065 m逐渐增大到1.096 m;对于林地而言,RMSE从0.088 m逐渐增大到2.201 m。对于3种地物类型而言,DEM生成精度均随抽取率的增大而逐渐降低,且不同地物类型RMSE的变化范围不同。  相似文献   
8.
基于地基激光雷达的活立木材积提取算法   总被引:1,自引:0,他引:1  
  相似文献   
9.
【背景】快速、准确地估算水稻产量对于肥水精确管理及国家粮食政策的制定至关重要。高光谱与激光雷达遥感作为2种不同的主被动监测技术,为水稻长势信息获取提供了多样化手段。【目的】对比2种遥感监测手段在不同生态点的独立数据集中的验证精度,寻求可移植性强的产量估算模型,对水稻长势监测提供理论与技术支撑,及为精确农业提供科学指导具有重要意义。【方法】本研究通过实施3年(2016—2018年)包含不同地点、不同品种与不同氮素水平的水稻田间试验,在抽穗后各时期同步获取点云数据和光谱数据,结合线性回归与随机森林回归来估算产量,探究抽穗后点云数据与光谱数据估算水稻产量的差异;同时评估产量模型在不同数据集的时空可移植性,寻求可移植性强的产量估算模型。【结果】利用点云数据估算产量的精度(R2 = 0.64—0.69)优于光谱数据的估算精度(R2 = 0.20—0.58);基于线性回归的产量估算模型,其验证精度明显优于基于随机森林回归的产量模型;产量模型在同一生态点的可移植性更强(不同生态点:RRMSE 16.69%—17.85%;同一生态点:RRMSE 11.37%—12.41%)。【结论】本研究为抽穗后水稻产量监测提供了新的方法和不同遥感手段的性能比较,为收获前作物产量的实时估算提供重要支撑。激光雷达技术凭借其全天候工作的特点,在长江中下游水稻产量实时监测中有着较好的应用前景。  相似文献   
10.
为探索激光雷达在农业机器人环境理解和导航中的应用,研究一种基于改进DBSCAN算法的果园树干检测算法。该算法使用自适应密度阈值和聚类半径对不同距离处数据点进行聚类和整合,以克服DBSCAN算法对全局变量值敏感的缺点。针对激光雷达可能扫到地面造成机器人误检的问题,采用机器人航位推算模型计算当前帧数据中待定类的距离,通过与前一帧数据中对应类距离的比较判定待定类的类别,进而对地面干扰类进行排除。试验结果表明:1)机器人正常行走时本算法能够排除噪声准确识别树干类点;2)存在果树分枝或地面干扰时,有少量漏检,平均误判果树数目为-0.13棵,能够区分出地面类和果树类。该研究可以应用到农业机器人果园环境理解和导航中。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号