首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   174篇
  国内免费   13篇
林业   8篇
农学   12篇
基础科学   5篇
  158篇
综合类   185篇
农作物   26篇
水产渔业   34篇
畜牧兽医   143篇
植物保护   16篇
  2025年   9篇
  2024年   22篇
  2023年   18篇
  2022年   19篇
  2021年   27篇
  2020年   25篇
  2019年   33篇
  2018年   30篇
  2017年   28篇
  2016年   26篇
  2015年   23篇
  2014年   22篇
  2013年   32篇
  2012年   35篇
  2011年   20篇
  2010年   21篇
  2009年   15篇
  2008年   15篇
  2007年   13篇
  2006年   19篇
  2005年   19篇
  2004年   21篇
  2003年   18篇
  2002年   11篇
  2001年   18篇
  2000年   8篇
  1999年   6篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   7篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有587条查询结果,搜索用时 22 毫秒
1.
    
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   
2.
The use of wood ash in forestry has been questioned because of the potential risk associated with its cadmium (Cd) content (1–30 mg kg–1). In agriculture, wood ash is only allowed for use as a fertilizer when its Cd content is below 3 mg kg–1. This restriction has not been applied to forest soils and there is a lack of knowledge about the potentially harmful effects of the Cd in wood ash on forest ecosystems. This paper summarizes our recent studies on the microbial communities of boreal coniferous forest humus exposed to Cd-containing wood ash treatment. The main objectives of our studies were to test if the Cd in wood ash has the potential to affect the humus layer microflora of coniferous upland forests and if it has the potential to enter the human food chain. These objectives were tested both in laboratory and field experiments with ash and ash spiked with Cd (in laboratory 400 or 1,000 mg Cd kg–1 as CdO or CdCl2; in field 400 mg Cd kg–1 as CdO). In one study the dissolution of ash was accelerated by irrigating it with simulated acid rain (SAR). Wood ash increased humus layer pH and microbial activities (respiration or thymidine incorporation rates) and changed its microfloral community structure (Biolog, PLFA, 16S or 18S rDNA PCR-DGGE) in both laboratory and field experiments. Spiking ash with Cd induced no further changes in the above-mentioned variables compared to ash alone. The Cd added with wood ash did not become bioavailable as detected with a bacterial biosensor Bacillus subtilis BR151(pTOO24). The form and level of Cd added in the ash had no further effect on the microbiological variables studied. Irrigation of ash with SAR did not increase the amount of bioavailable Cd, although the dissolution rate of the ash was increased. The concentration of Cd in soil water and in the berries of Vaccinium uliginosum and V. vitis-idaea, and the amount of humus bioavailable Cd did not increase with applied ash or ash spiked with Cd although the ash spiked with Cd increased the amount of humus total and extractable Cd in the 4-year field study. Only the ash spiked with Cd and not the unspiked normal wood ash resulted in significantly higher Cd concentrations in the mushroom Lactarius rufus and a slight increase in the berries of Empetrum nigrum (first year only). In conclusion, the Cd in wood ash did not become bioavailable and harmful to forest soil microbes, or leach into the humus layer even when treated with simulated acid rain. It is thus safe to use wood ash as a fertilizer in forests. However, since wood ash adds Cd to the environment, it is recommended that the same sites should not be fertilized with wood ash more than once. The effects of wood ash (3 t ha–1) on forest soil humus layer microbes are long-term, lasting at least 20 years, and probably longer if higher application dose and/or hardened ash is used.  相似文献   
3.
    
Calcium and phosphorus are essential minerals, closely linked in digestive processes and metabolism. With widespread use of low P diets containing exogenous phytase, the optimal dietary Ca level was verified. The 40‐day study evaluated the effects of Ca level (4, 7 and 10 g/kg diet) and Ca source (Ca from CaCO3 and from Lithothamnium calcareum) on mineral utilisation in 72 piglets (7.9 ± 1.0 kg BW) fed an exogenous phytase containing diet with 2.9 g digestible P/kg. Measured parameters were growth performance, stomach mineral solubility, bone breaking strength and urinary, serum and bone mineral concentration. The apparent total tract digestibility of minerals was also assessed in the two diets with 7 g Ca/kg, using 12 additional pigs. Regardless of Ca source, increasing dietary Ca impaired feed conversion ratio, increased urinary pH, increased serum and urinary Ca, decreased serum and urinary P, decreased serum Mg and increased urinary Mg, increased serum AP activity, decreased bone Mg increased bone Zn. Bone breaking strength was improved with 7 compared to 4 g Ca/kg. Compared to CaCO3, Ca from Lithothamnium calcareum increased serum Mg and with, 10 g Ca/kg, it limited body weight gain. The dose response of Ca in a diet with 2.9 g digestible P/kg and including exogenous phytase indicated that: (i) a low dietary Ca was beneficial for piglet growth, but was limiting the metabolic use of P; (ii) a high dietary Ca level impaired P utilisation; (iii) the optimal P utilisation and bone breaking strength was obtained with a dietary Ca‐to‐digestible P ratio of 2.1 to 2.4:1; (iv). Increasing dietary Ca reduced Mg utilisation, but not Zn status, when fed at adequate level. Finally, Ca from Lithothamnium calcareum had similar effects on Ca and P metabolism as CaCO3, but impaired growth when fed at the highest inclusion level.  相似文献   
4.
    
Zn deficiency is one of the leading health problems in children and women of developing countries. Different interventions could be used to overcome malnutrition, but biofortification is most impactful, convenient, sustainable and acceptable intervention. Maize is one of the major crops grown and consumed in the regions with prevalent Zn malnutrition; therefore, this is suitable target for Zn biofortification. Zn biofortification of maize could be achieved through agronomic and genetic approaches. Discussion of agronomic approaches with genetic approaches is prerequisite because soils in developing countries are deficit of Zn and availability of Zn in soils is mandatory for estimating the genetic responses of maize genotypes through genetic approaches. Seed priming, foliar and soil applications are agronomic tools for biofortification, but solo and combined applications of these treatments have different effects on Zn enrichment. Genetic approaches include the increase of Zn bioavailability or increase of kernel Zn concentration. Zn bioavailability could be increased by reducing the anti‐nutritional factors or by increasing the bioavailability enhancers. Kernel Zn concentration could be improved through hybridization and selections, whereas genetically engineered attempts for improving Zn uptake from soil, loading in xylem, remobilization in grains and sequestration in endosperm can further improve the kernel Zn concentration. Key challenges associated with dissemination of Zn biofortified maize are also under discussion in this draft. Current review emphasized all of above‐mentioned contents to provide roadmap for the development of Zn biofortified maize genotypes to curb the global Zn malnutrition.  相似文献   
5.
ABSTRACT

A greenhouse experiment was conducted to determine the bioavailability of copper (Cu) in clay loam and sandy clay loam soil. Lettuce (Lactuca sativa) and spinach (Spinacia oleracea) were grown in pots for 45 d. When mature, plants were treated for 15 additional days with 0, 100, 250, 500, or 1000 mg Cu kg?1 as CuSO4·5H2O. After harvest, Cu in soils and plant tissues was determined. In soils, applied Cu raised total and EDTA-extractible Cu. Results also revealed that the amounts of Cu extracted from sandy clay loam soil (80%) were higher than those extracted from clay loam soil (70%). In plants, increasing soil Cu concentration increased plant concentration of the metal. Plant species vary in their capacity for Cu accumulation: Lettuce has a relatively higher potential for Cu uptake and translocation than does spinach. Cu accumulation also differs among plant organs. In lettuce, metal accumulation is higher in roots than in shoots, where 60% to 80% of the total Cu of the plant is located in the roots. However, in spinach, there is no significant difference in Cu content between roots and shoots. The transfer of the metal from soil to plant is higher for plants grown on sandy clay loam soil. For a given rate of applied Cu, metal content in plant tissues is higher on sandy clay loam soil due to its higher transfer coefficient (CT) from soil to plant. Nevertheless, all crops studied showed a positive linear relationship between extractible soil Cu and plant Cu.  相似文献   
6.
The aim of this study was to investigate the pharmacokinetic properties of gamithromycin in pigs after an intravenous (i.v.) or subcutaneous (s.c.) bolus injection of 6 mg/kg body weight. The plasma concentrations of gamithromycin were determined using a validated high-performance liquid chromatography–tandem mass spectrometry method, and the pharmacokinetics were noncompartmentally analysed.  相似文献   
7.
Abstract. Chemical analysis alone is inadequate for comprehensively assessing the impact of soil pollution on biota. The term bioavailability can only be applied in a context specific to a target biological receptor or a proven chemical surrogate. Integration of biological and chemical data can often yield significant advances in hazard assessment and act as a suitable baseline for making site-specific risk assessments. Here, the value of biological techniques is discussed and their application described. The relative merit of test selection is considered and the new direction being developed in sublethal assessments. Currently, however, one of the major limitations is the seeming lack of flexibility of many assays in that they are either applicable to agricultural systems or industrial scenarios, but rarely to both. As a consequence, few assays have internationally adopted protocols. The introduction of new methods and the continued improvement and refinement of assays make this area of soil science dynamic and responsive.  相似文献   
8.
    
Plants are well known to incorporate pesticides into bound and unextractable residues that resist solubilization in common laboratory solvents and are therefore not accessible to standard residue analysis. A characterization of such residues has been proposed for incorporation rates above trigger values of 0.05 mg kg(-1) parent pesticide equivalents, or percentage values of 10% (United States Environmental Protection Agency, 1995) or 25% (Commission of the European Communities, 1997) of the total radioactive residue. These trigger values are often exceeded. The present review describes the current status of the chemical characterization and animal bioavailability of bound and unextractable residues that may be xenobiotic in nature or result from natural recycling of simple degradation products. The latter case represents a mechanism of detoxification. Bound residues have been shown to be covalent or non-covalent in nature. With regard to the plant matrix molecules involved, incorporation into proteins, lignins, pectins, hemicelluloses and cutins has been demonstrated, and four covalent linkage types are known. Animal feeding experiments have revealed cases of low as well as high bioavailability. Many of the studies are limited by experimental uncertainties and by results only being reported as relative percentage values rather than absolute exposure. A preliminary value of absolute exposure from bound and unextractable residues is derived here for the first time from eight case studies. The mean exposure (ca 1.5 mg kg(-1) pesticidal equivalents) exceeds some of the existing maximum residue levels (MRLs) of residual free pesticides that are typically in the range of 0.05-1 mg kg(-1). A mathematical framework for the correction of current maximum residue levels is presented for cases of highly bioavailable bound residues. As bound pesticidal residues in food plants could represent a source of significant consumer exposure, an experimental test scheme is proposed here. It consists of basic chemical characterization, model digestibility tests and, in exceptional cases, animal bioavailability and additional toxicological studies.  相似文献   
9.
    
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   
10.
    
This study aimed to examine the bioavailability (BA) and pharmacokinetic (PK) characteristics of sulfadiazine (SDZ) in grass carp (Ctenopharyngodon idellus) after oral and intravenous administrations. Blood samples were collected at predetermined time points of 0.083, 0.17, 0.5, 1, 2, 4, 8, 16, 24, 48, 72, and 96 hr (n = 6). The samples were extracted and purified by organic reagents and determined by the ultra‐performance liquid chromatography. The software named 3P97 was used to calculate relevant PK parameters. The results demonstrated that the concentration–time profile of SDZ was best described by a one‐compartmental open model with first‐order absorption after a single oral dose. The main PK parameters of the absorption rate constant (Kα), the absorption half‐life (t1/2 Kα), the elimination rate constant (Ke), the elimination half‐life (t1/2Ke), and the area under concentration–time profile (AUC0‐∞) were 0.3 1/h, 2.29 hr, 0.039 1/h, 17.64 hr, and 855.78 mg.h/L, respectively. Following intravenous administration, the concentration–time curve fitted to a two‐compartmental open model without absorption. The primary PK parameters of the distribution rate constant (α), the elimination rate constant (β), the distribution half‐life (t1/2α), the elimination half‐life (t1/2β), the apparent distribution volume (VSS), the total clearance (CL), and AUC0‐∞ were 9.62 1/hr, 0.039 1/hr, 0.072 hr, 17.71 hr, 0.33 L/kg, 0.013 L h?1 kg?1, and 386.23 mg.h/L, respectively. Finally, the BA was calculated to be 22.16%. Overall, this study will provide some fundamental information on PK properties in the development of a new formulation SDZ in the future and is partially beneficial for the appropriate usage of SDZ in aquaculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号