首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   6篇
农学   7篇
  7篇
综合类   6篇
农作物   2篇
畜牧兽医   46篇
园艺   1篇
  2024年   2篇
  2023年   7篇
  2022年   7篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2014年   2篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  1997年   1篇
  1996年   1篇
  1993年   4篇
  1992年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
51.
中国小麦土壤有效磷丰缺指标与适宜施磷量研究   总被引:3,自引:1,他引:2  
本文系统总结了我国开展的小麦土壤有效磷丰缺指标与适宜施磷量研究。结果表明,30年来我国小麦土壤有效磷丰缺指标明显提高;小麦土壤有效磷丰缺指标不同区域之间差异很大,以缺磷处理相对产量90%指标为例,土壤Olsen-P含量低者<15 mg/kg,高者>35 mg/kg;除黄淮海平原、关中灌区和河套灌区外,我国小麦土壤有效磷丰缺指标研究存在很多空白区域;小麦土壤缺磷较为普遍,第2~4级为土壤有效磷集中分布的丰缺级别,缺磷处理相对产量大多处在70%~100%;土壤养分丰缺指标研究的试验点数不宜过少,丰缺指标高端和低端采用外推数据需谨慎,并应予以注明;适宜施磷量与土壤有效磷丰缺级别线性负相关,与小麦目标产量线性正相关,与磷肥当季利用率线性负相关;当磷肥当季利用率20%、目标产量3~12 t/hm2时,土壤有效磷丰缺级别第1~7级的水稻适宜施磷量范围依次为0~0、17~66、33~132、50~198、66~264、83~330和99~396 kg/hm2。  相似文献   
52.
为了给我国马铃薯测土施肥提供科学依据,采用理论数据法、土壤养分含量与缺素处理相对产量回归方程法和“养分平衡—地力差减法”确定适宜施肥量新应用公式,开展了我国马铃薯土壤氮、磷、钾丰缺指标与适宜施肥量研究。结果表明,我国马铃薯土壤第1~7级全氮丰缺指标依次为≥2.22、1.55~2.22、1.08~1.55、0.76~1.08、0.53~0.76、0.37~0.53和<0.37 g/kg,碱解氮依次为≥316、208~316、136~208、90~136、59~90、39~59和<39 mg/kg;北方土壤有效磷(Olsen-P)第1~7级丰缺指标依次为≥51、25~51、13~25、6~13、3~6、1.5~3和<1.5 mg/kg,南方土壤有效磷(Olsen-P)第1~6级丰缺指标依次为≥81、43~81、27~43、15~27、4~15和<4 mg/kg;我国土壤速效钾(NH&lt;sub&gt;4&lt;/sub&gt;OAc-K)第1~6级丰缺指标依次为≥307、182~307、120~182、72~120、31~72和<31 mg/kg。当氮、磷、钾肥当季利用率分别为40%、20%和50%,马铃薯目标产量15~75 t/hm&lt;sub&gt;2&lt;/sub&gt;时,土壤养分丰缺级别第1~7级的适宜施氮量范围依次为0~0、23~113、45~225、68~338、90~450、113~563和135~675 kg/hm&lt;sub&gt;2&lt;/sub&gt;,适宜施磷量范围依次为0~0、12~60、24~120、36~180、48~240、60~300和72~360 kg/hm&lt;sub&gt;2&lt;/sub&gt;,适宜施钾量范围依次为0~0、21~105、42~210、63~315、84~420、105~525和126~630 kg/hm&lt;sub&gt;2&lt;/sub&gt;。  相似文献   
53.
“养分平衡—地力差减法”确定适宜施肥量的新应用公式   总被引:6,自引:0,他引:6  
为了获得一个与"土壤养分丰缺指标法"结合紧密、便于应用的确定适宜施肥量的新应用公式,以期使土壤养分丰缺指标体系建设减少试验工作量、简单易行,研究在对"养分平衡—地力差减法"确定适宜施肥量现有计算公式系统评析的基础上,选择实用性相对较强的应用公式进行改造:适宜施用养分量=(目标产量-基础产量)×单位经济产量作物吸收养分量÷养分当季利用率;改造方案为以"缺素处理产量"替代"基础产量",将"全肥处理产量"作为"目标产量",把"缺素处理相对产量"引入公式,用"单位经济产量作物移出养分量"替代"单位经济产量作物吸收养分量"。结果表明:经过推导得到一个新应用公式,适宜施用养分量=(1-缺素处理相对产量)×目标产量作物移出养分量÷养分当季利用率。利用新应用公式,在建立土壤养分丰缺指标之"常规5处理"田间试验基础上,无需再增加任何试验处理,即可直接计算出不同丰缺级别土壤的适宜施肥量。  相似文献   
54.
中国北方甜菜土壤速效钾丰缺指标与适宜施钾量研究   总被引:2,自引:0,他引:2  
为了给甜菜测土施肥提供科学依据,采用零散实验数据整合法、缺素处理相对产量与土壤养分含量回归方程法和“养分平衡—地力差减法”确定适宜施肥量新应用公式,开展了我国北方甜菜土壤速效钾丰缺指标与适宜施钾量研究。结果表明,中国北方甜菜土壤速效钾(NH4OAc-K)第1~5级丰缺指标依次为>409、224~409、123~224、68~123和≤68 mg/kg。当钾肥当季利用率40%、目标产量30~90 t/hm^2时,土壤速效钾丰缺级别第1~5级的适宜施钾量范围依次为0~0、41~124、83~248、124~371和165~495 kg/hm^2。  相似文献   
55.
黄骅市紫花苜蓿土壤有效磷丰缺指标初步研究   总被引:1,自引:0,他引:1  
邵光武  刘治波  孙洪仁  沈月  曹影  刘琳  吴雅娜 《草业科学》2012,29(12):1805-1809
为给河北省黄骅市紫花苜蓿(Medicago sativa)施肥提供科学依据,于2010―2011年在该地区选取有效磷含量差异较大的11个地块的土壤,进行全肥和缺磷处理盆栽试验,依据不同有效磷含量土壤的缺磷处理的相对产量,初步研究了该地区紫花苜蓿土壤有效磷丰缺指标。结果表明,与缺磷处理相对产量>95%、85%~95%、75%~85%、65%~75%、55%~65%和45%~55%相对应的黄骅市紫花苜蓿的第1至第6级土壤有效磷含量指标分别为>47.5、27.2~47.5、15.6~27.2、8.9~15.6、5.1~8.9和2.9~5.1 mg·kg-1。  相似文献   
56.
57.
北京地区紫花苜蓿建植当年的耗水系数和水分利用效率   总被引:5,自引:0,他引:5  
采用小型蒸渗仪法研究了北京地区中苜1号和WL323紫花苜蓿建植当年的耗水系数和水分利用效率。结果表明,中苜1号和WL323的生物产量耗水系数分别为915.0和939.7,经济产量耗水系数分别为786.9和808.1,2个品种之间差异不显著;不同茬次之间差异显著(P<0.05),第2茬最低,第3茬最高;中苜1号和WL323的地上部生物产量的水分利用效率分别为11.0和10.6kg/(mm.hm2),全部生物产量分别为19.2和17.9kg/(mm.hm2),经济产量水分利用效率分别为12.8和12.3kg/(mm.hm2),2个品种之间差异不显著;不同茬次之间差异显著(P<0.05),第2茬最高,第3茬最低。  相似文献   
58.
紫花苜蓿根系生物量   总被引:3,自引:1,他引:2  
本文综述了紫花苜蓿(Medicagosativa L.)根系生物量的影响因子和若干自然区域内的紫花苜蓿根系生物量。影响紫花苜蓿根系生物量的影响因子包括土层厚度、地下水位、土壤特性、淹水、耕作、施肥、灌溉、刈割、生长调节剂、混播、植株密度、品种和生长年限。土壤障碍(酸、碱、盐、粘重和紧实)越重、土层越薄、地下水位越高,紫花苜蓿根系生物量越小。淹水降低紫花苜蓿根系生物量。深耕可增加紫花苜蓿根系生物量,播种当年效果尤为明显。施肥可增加紫花苜蓿根系生物量。灌溉可增加紫花苜蓿根系生物量,灌溉模式及灌溉量适当时可获得相对较大的根系生物量。刈割频率越高,紫花苜蓿根系生物量越低。添加生长调节剂可增加紫花苜蓿根系生物量。混播降低紫花苜蓿根系生物量。在一定范围内,紫花苜蓿根系生物量随着植株密度的增加而增加。不同品种(材料)的根系生物量存在一定差异。生长年限越长,紫花苜蓿根系生物量越大。在每个生长季内紫花苜蓿根系生物量呈逐渐提高趋势,但在返青之初和每次刈割之后出现降低,3~4周后恢复至刈割前水平,其后则继续增加。不同自然区域紫花苜蓿的根系生物量差异较大。在相对正常的栽培管理条件下,生长1年紫花苜蓿的根系生物量约在2~7t.hm-2之间,生长2年者约为3~9 t.hm-2,生长3~5年者约为4~21 t.hm-2。  相似文献   
59.
不同年限紫花苜蓿(生长)水分利用效率和耗水系数的差异   总被引:5,自引:3,他引:2  
采用小型蒸渗仪法,在北京平原区研究了一年生和二年生紫花苜蓿Medicago sativa水分利用效率和耗水系数的差异。研究结果表明:二年生紫花苜蓿的生物产量和经济产量水分利用效率[14.7和17.1 kg/(hm2·mm)]显著高于一年生紫花苜蓿[12.6和14.7 kg/(hm2·mm)](P<0.05);生物产量和经济产量耗水系数(679和584)显著低于一年生紫花苜蓿(793和682)(P<0.05)。研究表明生长年限对紫花苜蓿的水分利用效率和耗水系数具有影响。  相似文献   
60.
紫花苜蓿根系入土深度   总被引:8,自引:2,他引:6  
综述了紫花苜蓿(Medicago sativa L.)根系入土深度的影响因子和若干自然区域的紫花苜蓿根系入土深度,为其根系的深入研究及栽培管理提供依据.影响紫花苜蓿根系入土深度的因子包括土层厚度、地下水位、土壤特性、耕作、施肥、灌溉、刈割、生长调节剂、品种和生长年限,其中土层厚度、地下水位、土壤特性和生长年限对紫花苜蓿根系入土深度的影响较大;土层越薄、地下水位越高、土壤障碍(酸、碱、盐、粘重、紧实和贫瘠)越重、生长年限越短,根系入土深度越浅;深耕、施肥和应用生长调节剂皆可促进苜蓿根系下扎;不同灌溉模式根系入土深度略有不同;刈割频率越高,根系入土深度越浅;不同品种根系入土深度存在一定差异;不同自然区域和生长年限紫花苜蓿根系入土深度差异很大;在土层薄及地下水位高的情况下,紫花苜蓿根系入土深度取决于土层厚度和地下水位;当土壤障碍较为严重时,紫花苜蓿根系入土深度常可浅至不足1 m,一般不超过2 m;在无明显土壤障碍因子的情况下,生长1年紫花苜蓿根系入土深度约为1~2 m,生长2-5年者多在2~5 m之间.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号