首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   7篇
基础科学   8篇
  8篇
综合类   7篇
农作物   2篇
  2024年   3篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2013年   1篇
  2009年   1篇
  2008年   3篇
  2004年   3篇
  2003年   1篇
排序方式: 共有25条查询结果,搜索用时 125 毫秒
21.
针对无人机采集的茶叶枯病图像中病斑差异大,病斑和背景之间相似性高等问题,设计了一个轻量型网络LiTLBNet,用于准确、实时地检测野外茶园无人机图像中的茶叶枯病。LiTLBNet使用轻量型的M-Backbone作为骨干网络,用来提取茶叶枯病病斑的可区分特征,减少因图像中病斑的尺度、颜色和形状的巨大差异而导致的漏检。在LiTLBNet的LNeck结构中引入了SE和ECA模块,帮助网络在通道维度上学习目标的综合特征,减少因病斑和背景之间的相似性造成的误检,同时删除原基线网络最大的特征图,以减少计算量和模型大小。此外,本研究还通过旋转、加噪声、构建合成图像等方式来扩充训练样本数量,提高小样本条件下LiTLBNet网络泛化能力。实验结果表明,利用LiTLBNet检测无人机遥感图像中茶叶枯病的精度为75.1%,平均精度均值为78.5%,与YOLO v5s接近。然而,LiTLBNet内存占用量仅2.0MB,是YOLO v5s网络的13.9%。LiTLBNet网络可用于对茶叶枯病进行实时、准确的无人机遥感监测。  相似文献   
22.
针对无人机图像背景复杂、小麦密集、麦穗目标较小以及麦穗尺寸不一等问题,提出了一种基于FE-P2Pnet(Feature enhance-point to point)的无人机小麦图像麦穗自动计数方法。对无人机图像进行亮度和对比度增强,增大麦穗目标与背景之间的差异度,减少叶、秆等复杂背景因素的影响。引入了基于点标注的网络P2Pnet作为基线网络,以解决麦穗密集的问题。同时,针对麦穗目标小引起的特征信息较少的问题,在P2Pnet的主干网络VGG16中添加了Triplet模块,将C(通道)、H(高度)和W(宽度)3个维度的信息交互,使得主干网络可以提取更多与目标相关的特征信息;针对麦穗尺寸不一的问题,在FPN(Feature pyramid networks)上增加了FEM(Feature enhancement module)和SE(Squeeze excitation)模块,使得该模块能够更好地处理特征信息和融合多尺度信息;为了更好地对目标进行分类,使用Focal Loss损失函数代替交叉熵损失函数,该损失函数可以对背景和目标的特征信息进行不同的权重加权,进一步突出特征。实验结果表明,在本文所构建的无人机小麦图像数据集(Wheat-ZWF)上,麦穗计数的平均绝对误差(MAE)、均方误差(MSE)和平均精确度(ACC)分别达到3.77、5.13和90.87%,相较于其他目标计数回归方法如MCNN(Multi-column convolutional neural network)、CSRnet(Congested scene recognition network)和WHCNETs (Wheat head counting networks)等,表现最佳。与基线网络P2Pnet相比,MAE和MSE分别降低23.2%和16.6%,ACC提高2.67个百分点。为了进一步验证本文算法的有效性,对采集的其它4种不同品种的小麦(AK1009、AK1401、AK1706和YKM222)进行了实验,实验结果显示,麦穗计数MAE和MSE平均为5.10和6.17,ACC也达到89.69%,表明本文提出的模型具有较好的泛化性能。  相似文献   
23.
[目的]研究侧深施肥不同用量对中籼杂交稻两优688生长和产量的影响,以便合理使用化肥,寻求更科学的施肥方法.[方法]试验设5个处理(处理①为基肥用缓释肥375.0 kg/hm2机插秧同步侧深施肥,在倒二叶时追施187.5 kg/hm2复合肥作穗肥;处理②为基肥用缓释肥450.0 kg/hm2机插秧同步侧深施肥,在倒二叶时追施187.5 kg/hm2复合肥作穗肥;处理③为基肥用缓释肥525.0 kg/hm2机插秧同步侧深施肥,在倒二叶时追施187.5 kg/hm2复合肥作穗肥;CK1为基肥用复合肥450.0 kg/hm2机插秧同步侧深施肥,在倒二叶时追施187.5 kg/hm2复合肥作穗肥;CK2为基肥用复合肥450.0 kg/hm2旋耕前人工撒施,机插后8和15 d分别追施尿素75.0、150.0 kg/hm2,倒二叶时追施复合肥187.5 kg/hm2做穗肥),对比分析各处理条件下水稻生育进程、分蘖动态和产量的差异.[结果]各处理生育期由长到短排序为处理③、处理②、处理①、CK1、CK2,其中处理③生育期最长,CK1、CK2均最短;各处理最终有效穗数的差异较小,但成穗率差异较明显,处理①成穗率最高;CK2倒三叶长度最长,处理①长度较为适中;实际产量由大到小排序为处理①、处理③、处理②、CK1、CK2.[结论]常量侧深施肥可以为水稻定量、均匀施肥提供保证,可提高水稻对肥料的利用率,促进形成大穗和高产,同时可降低肥料的损失和对环境的污染,值得在大规模水稻生产中应用和推广.  相似文献   
24.
以小麦叶片条锈病和白粉病为研究对象,针对同类型病害的不同严重度之间的图像颜色及纹理特征差异较小,传统方法病害严重度估计准确率不高的问题,提出一种基于循环空间变换的卷积神经网络(Recurrent spatial transformer convolutional neural network,RSTCNN)对小麦叶片病害进行严重度估计。RSTCNN包含3个尺度网络,并由区域检测子网络进行连接。每个尺度网络以VGG19作为基础网络以提取病害的特征,同时为了统一区域检测过程中前后特征图的维度,在全连接层前引入空间金字塔池化(Spatial pyramid pooling,SPP);区域检测子网络则采用空间变换(Spatial transformer,ST)有效提取尺度网络特征图中病害的注意力区域。小麦叶片病害图像通过每个尺度网络中卷积池化层得到的特征图,一方面可作为预测病害严重度类别概率的依据,另一方面通过ST进行注意力区域检测并将检测到的区域作为下一个尺度网络的输入,通过交替促进的方式对注意力区域检测和局部细粒度特征表达进行联合优化和递归学习,最后对不同尺度网络的输出特征进行融合再并入到全连接层和Softmax层进行分类,从而实现小麦叶片病害严重度的估计。本文对采集的患有条锈病和白粉病的小麦叶片图像结合数据增强方法构建病害数据集,实验验证了改进后的RSTCNN在3层尺度融合的网络对病害严重度估计准确率较佳,达到了95.8%。相较于基础分类网络模型,RSTCNN准确率提升了7~9个百分点,相较于传统的基于颜色和纹理特征的机器学习算法,RSTCNN准确率提升了9~20个百分点。结果表明,本文方法显著提高了小麦叶片病害严重度估计的准确率。  相似文献   
25.
在无人机上安装光学传感器捕捉农作物图像是一种经济高效的方法,它有助于产量预测、田间管理等。该研究以无人机小麦作物图像为研究对象,针对图像中麦穗分布稠密、重叠现象严重、背景信息复杂等特点,设计了一种基于TPH-YOLO(YOLO with transformer prediction heads)的麦穗检测模型,提高无人机图像麦穗计数的精度。首先,为了减小光照不均匀对无人机图像质量造成的影响,该研究采用Retinex算法进行图像增强处理。其次,在YOLOv5的骨干网络中添加坐标注意力机制(coordinateattention,CA),使模型细化特征,更加关注麦穗信息,抑制麦秆、麦叶等一些背景因素的干扰。再次,将YOLOv5中原始的预测头转换为Transformer预测头(transformer prediction heads,TPH),该预测头具有多头注意力机制的预测潜力,可以在高密度场景下准确定位到麦穗。最后,为了提高模型的泛化能力和检测精度,采用了迁移学习的训练策略,先使用田间采集的小麦图像数据集对模型进行预训练,接着再使用无人机采集的小麦图像数据集对模型进行参数更新和优化训练,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号