首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  国内免费   10篇
林业   6篇
农学   4篇
  68篇
综合类   45篇
农作物   1篇
水产渔业   7篇
畜牧兽医   12篇
园艺   2篇
植物保护   13篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   7篇
  2015年   9篇
  2014年   9篇
  2013年   8篇
  2012年   15篇
  2011年   14篇
  2010年   10篇
  2009年   13篇
  2008年   9篇
  2007年   5篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1998年   1篇
  1997年   1篇
排序方式: 共有158条查询结果,搜索用时 343 毫秒
101.
A short-term mesocosm experiment was conducted to ascertain the impact of tebuconazole on soil microbial communities. Tebuconazole was applied to soil samples with no previous pesticide history at three rates: 5, 50 and 500 mg kg−1 DW soil. Soil sampling was carried out after 0, 7, 30, 60 and 90 days of incubation to determine tebuconazole concentration and microbial properties with potential as bioindicators of soil health [i.e., basal respiration, substrate-induced respiration, microbial biomass C, enzyme activities (urease, arylsulfatase, β-glucosidase, alkaline phosphatase, dehydrogenase), nitrification rate, and functional community profiling]. Tebuconazole degradation was accurately described by a bi-exponential model (degradation half-lives varied from 9 to 263 days depending on the concentration tested). Basal respiration, substrate-induced respiration, microbial biomass C and enzyme activities were inhibited by tebuconazole. Nitrification rate was also inhibited but only during the first 30 days. Different functional community profiles were observed depending on the tebuconazole concentration used. It was concluded that tebuconazole application decreases soil microbial biomass and activity.  相似文献   
102.
[目的]研究潜流式人工湿地微生物的特性,[方法]采用脂磷法对潜流式湿地微生物生物量进行了测定,采用Biolog试验对湿地的微生物多样性进行了研究。[结果]在潜流式湿地中,微生物量沿程按照负指数的形式减少,脂磷法与平板茵落计数法测定的结果对比表明,采用脂磷法测得的微生物量大于平板菌落计数法。进水端微生物的平均吸光度(AWCD)、Shannon指数、Shannon均度和Simpson指数、McIntosh指数和均度均大于出水端微生物,因此,进水端微生物的生物多样性高于出水端微生物。[结论]该研究可为优化微生物群落结构和反应器设计,强化人工湿地功能提供理论指导,  相似文献   
103.
在温室盆栽条件下,研究了不同接种方式和腐熟度的堆肥对番茄生长和防病的影响,并应用Biolog方法研究了不同堆肥对土壤微生物群落的调节作用.结果表明,堆肥能明显提高番茄的株高和生物量,减轻番茄青枯病的发生,且2次接种的堆肥较1次接种和不接种的堆肥防效好,而不同腐熟时间的堆肥则差异不显著.腐熟30 d堆肥能在前期较早较快地提高土壤微生物的平均颜色利用率(AWED)和多样性指数(Shannon、Simpson、McIntosh),而腐熟20 d堆肥起效较慢,但在中后期能较持久地提高.与1次接种和不接种堆肥相比,2次接种堆肥的AWCD值和多样性指数提高得较快.  相似文献   
104.
为研究库布齐沙地生态恢复过程中不同植被恢复类型对土壤微生物群落功能多样性的影响,采用Biolog-ECO微平板检测法,对库布齐沙地自然恢复19年的油蒿群落、人工种植19年的中间锦鸡儿群落土壤微生物群落功能多样性进行研究。结果表明:1)土壤微生物群落利用全部碳源的代谢活性和土壤微生物功能多样性指数均表现为两种植被恢复类型显著高于流沙对照,其中,自然恢复的油蒿群落根际、非根际土壤分别高于人工种植的中间锦鸡儿群落根际和非根际土壤;2)随着植被恢复,从流沙对照土壤微生物以氨基酸类、胺类和芳香类为主要碳源,转为主要利用糖类、羧酸类、多聚物类碳源。不同植被恢复类型对碳源的利用不同,油蒿群落以糖类、羧酸类、多聚物类为主要利用碳源,中间锦鸡儿群落以羧酸类、氨基酸类和胺类为主要利用碳源;3)主成分分析表明,不同植被恢复类型土壤微生物碳源利用特征出现分异,在主成分分离中主要贡献者是糖类碳源;4)土壤氮素含量与土壤微生物群落功能多样性密切相关。冗余分析表明,土壤有机质、全氮、速效钾、速效氮、pH和全磷是土壤微生物群落利用碳源的主要控制因子。综合分析认为,植被恢复改变了沙地土壤微生物群落结构和功能多样性,自然恢复的油蒿群落更有利于增加利用多类碳源的微生物种群,在提高微生物利用碳源的整体代谢活性方面具有显著优势。  相似文献   
105.
隋心  张荣涛  刘赢男  许楠  倪红伟 《草地学报》2016,24(6):1226-1233
采用Biolog-Eco方法分析了模拟氮沉降对三江平原小叶章(Calamagrostis angustifolia)湿地土壤微生物碳源利用的影响。结果表明:不同氮沉降处理间土壤微生物功能多样性差异显著,AWCD值随培养时间延长而增加。土壤微生物对6大类碳源利用强度存在差异,各处理间土壤微生物对氨基酸类碳源利用率最高,为优势碳源;不同处理间土壤微生物在碳源利用上有明显的空间分异,土壤微生物功能多样性的差异主要体现在对羧酸类、酚酸类和胺类碳源的利用上,其中胺类尤为突出;此外,对不同施氮处理土壤微生物群落功能多样性与土壤理化因子相关分析表明,全氮、铵态氮、全磷会对小叶章湿地土壤微生物组成和功能活性产生显著影响。以上结果表明增加氮沉降改变了土壤微生物功能多样性。  相似文献   
106.
三七收获后不同年限土壤微生物代谢多样性分析   总被引:1,自引:0,他引:1  
采用Biolog技术,对云南省砚山县的盘龙、阿猛、干河3个乡镇进行了三七历年种植地的调查研究,以未种植过三七的土壤为对照,研究三七收获后1~6 a不同年限对土壤养分、土壤微生物对碳源利用以及土壤微生物多样性的影响。结果表明,反映土壤微生物活性的平均颜色变化率(AWCD)并未随年限增加呈现明显变化规律;微生物培养96 h活性旺盛。对Biolog板31种碳源吸光度值聚类分析表明,3个乡镇所取三七收获后1 a和6 a土壤微生物碳源利用均可聚为一类,其土壤微生物碳源利用特征相似,其余不同年限土壤微生物碳源利用聚类并未出现一定规律;与未种植过三七的土壤相比,三七收获后1 a、6 a土壤微生物均对碳水化合物类、聚合物类、羧酸类和酚类碳源的利用分别高出25.97%~55.59%和53.14%~65.68%;随着三七收获后年限的增加,土壤微生物对碳水化合物、氨基酸类、羧酸类碳源利用呈收获后2 a升高、4 a和5 a下降趋势。收获三七后1~6 a土壤与未种植过三七的土壤相比,氮、磷、钾及有机质含量差异均不显著。除干河乡外,阿猛乡和盘龙乡收获三七后1~6 a土壤微生物与未种植过三七的相比,Shannon-Wiener指数、丰富度指数、Simpson指数均值总体差异不明显。试验说明三七轮作至少需6 a以上时间,土壤微生物对不同碳源的优势利用可反映出三七连作障碍与土壤微生物群落结构差异有密切联系。  相似文献   
107.
生物炭施入土壤被认为是一种有效的固碳减排措施,可增加土壤有机碳及矿质养分含量,提高土壤的持水能力及保肥能力。为探明其施入土壤后对土壤微生物活性及多样性的影响,本文在盆栽试验条件下,采用Biolog与高通量测序相结合的方法,研究了CK(不施生物炭)和施用5 g·kg~(-1)、10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)玉米秸秆生物炭对土壤微生物碳源利用能力(AWCD)、功能多样性指数以及土壤细菌的丰度和多样性的影响。结果表明,随着生物炭施用量的增加,表征土壤微生物活性的AWCD值呈下降趋势,表现为:5 g·kg~(-1)处理≈CK10 g·kg~(-1)处理30 g·kg~(-1)处理60 g·kg~(-1)处理,其中CK和5 g·kg~(-1)处理间差异不显著(P0.05),而10 g·kg~(-1)、30 g·kg~(-1)和60 g·kg~(-1)处理在整个培养期间的AWCD值显著低于CK处理(P0.05);土壤微生物群落代谢功能多样性指数(H′)、碳源利用丰富度指数(S)均随生物炭施用量的增加而呈下降趋势,但均匀度指数(E)表现出相反趋势,5g·kg~(-1)、10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)各处理的H′较CK处理分别增加0.16%、-0.88%、-3.14%、-11.09%,S分别增加-2.82%、-11.27%、-18.31%、-47.89%,E分别增加1.14%、3.00%、3.73%和13.76%。主成分分析表明,与CK处理比较,5 g·kg~(-1)处理对土壤微生物群落碳源利用方式没有显著影响(P0.05),而10 g·kg~(-1)、30 g·kg~(-1)和60g·kg~(-1)处理对土壤微生物群落碳源利用方式影响显著(P0.05)。随着生物炭施用量的增加,土壤细菌OTU数目及丰富度指数(Chao1)呈增加趋势,5 g·kg~(-1)处理与CK处理差异不显著,而10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)处理的OTU数目较CK处理分别增加1.09%、5.26%、24.42%,Chao1分别增加5.73%、10.21%、37.68%。土壤中施用生物炭后土壤细菌变形菌门(Proteobacteria)的丰度在CK处理和5 g·kg~(-1)处理间差异不显著(P0.05),而10g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)处理较CK处理分别增加32.3%、21.1%、16.7%,拟杆菌门(Bacteroidetes)的丰度随着生物炭施用量的增加各处理较CK处理分别减少22.1%、55.3%、66.8%、50.5%。生物炭施入土壤后降低了土壤可培养微生物的活性,减少或改变了土壤微生物碳源利用的种类,使土壤原有微生物群落组分发生改变,生物炭也影响了土壤细菌各菌群在土壤中的丰度,使其分布的均匀性降低。为了不影响微生物群落结构和功能,石灰性褐土上生物炭一次还田量不能超过5 g·kg~(-1)(干土)。  相似文献   
108.
采用Biolog-Eco微平板法,通过模拟实验探究外源Cd胁迫下不同量(0%、2.5%、10%,W/W)秸秆生物质炭输入后土壤微生物在碳代谢功能方面的响应机制。平均吸光度(AWCD)值、多样性指数、碳源利用特征和主成分分析结果均表明:Cd污染条件下,生物质炭的施用提高了土壤中微生物群落碳源代谢活性及功能多样性,2.5%生物质炭处理下的提高效果尤为显著。土壤微生物Mc Intosh指数上升了70.59%,群落物种均一度发生巨大的变化;土壤微生物对羧酸类、氨基酸类碳源化合物的利用能力分别提高了10倍和5倍,其中2.5%低质量分数生物质炭提高了土壤微生物对羧酸类和糖类碳源化合物利用率,10%高质量分数生物质炭却提高了氨基酸类碳源化合物的利用率。进一步分析显示,羧酸类、其他类和聚合物类碳源化合物促使两个生物质炭处理组与单加Cd对照组在碳源利用率上存在差异。  相似文献   
109.
接种菌剂对堆肥微生物利用碳源能力的影响   总被引:7,自引:0,他引:7  
以城市污泥和园林废弃物为堆肥原料,接种高效菌剂,应用Biolog方法研究堆肥中不同阶段微生物的群落多样性和微生物对Biolog GN2微平板上胺类、氨基酸类、糖类、羧酸类、聚合物类和其他类碳源的利用能力.结果表明,微生物在不同堆肥阶段对6类碳底物的利用能力不同,但每个阶段都是对糖类碳源消耗得最多.接种菌剂使堆肥前期(0-35d)的微生物对各类有机碳源的利用能力提高,特别是在堆制21d,微生物利用碳源的速度和消耗量显著增强.接种菌剂提高了微生物群落功能多样性和群落均匀度.  相似文献   
110.
Previously-frozen stores of organic carbon (C) are now subject to decomposition due to a warming Arctic climate and associated permafrost thaw; however, estimates of the amount of greenhouse gases (GHG) that may be released are not well constrained. Knowing more about the functions of the extant permafrost microbial community will inform this knowledge gap. The exploration of microbial functional traits may be useful to elucidate the relationship between microbial diversity and ecosystem function. We characterized the community traits and functional diversity of the bacterial and Archaeal component of the microbial community from three depths of permafrost, as well as the organic and mineral horizons of the seasonally-thawed active layer, by assessing ‘substrate-use richness,’ ‘substrate preference,’ ‘growth rate,’ ‘and substrate specific growth rate.’ We measured the microbial community response to 31 substrates with an EcoPlate (Biolog, Inc.) assay at three incubation temperatures (1, 10, and 20 °C) using a kinetic approach, and modeled the microbial response to each substrate with a modified logistic growth function. We hypothesized that the permafrost communities would be selected for high functional potential and activity at cold temperatures. Rather, we found that the permafrost community did not have a higher functional diversity or activity at 1 °C than the organic active layer soils. In addition, permafrost communities increased their growth rates with increasing temperature, indicating that the highest incubation temperature (20 °C) was below their temperature optimum for growth. As predicted, the permafrost communities did exhibit temperature dependent substrate preferences. Thus, permafrost microbial communities did not appear to be selected for higher metabolism and the ability to use a broad suite of substrates at low temperatures, which suggests that they may have limited function immediately following thaw when temperatures are near 0 °C. However, changes in community composition or additional permafrost warming will increase the functional capabilities of permafrost microbes to decompose the C stored in those soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号