首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   6篇
基础科学   8篇
  12篇
综合类   5篇
植物保护   6篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
11.
Knowledge of the generation of subsurface flow for hillslopes is important for controlling agricultural nonpoint nutrient losses. This study used a physically based hillslope hydrologic model HYDRUS‐2D to assess the sensitivity of simulated subsurface flow to the interactions between precipitation, soil texture and land use. Soil moisture data from 1 January 2013 to 23 August 2014 at two monitoring sites on a tea plantation hillslope were used to calibrate the van Genuchten–Mualem hydraulic parameters for this model. For six different textural classes (loamy sand, loam, silt, silt loam, clay loam and clay) and four land‐use types (tea garden, forest, grassland and bare soil), scenario‐based simulations were carried out for varied precipitation intensities (6.0, 15.0, 30.0, 45.0, 60.0 and 76.0 mm/day) and frequencies (time intervals of 1, 5, 10, 15, 20 and 25 days). Results indicated that the hillslope run‐off was dominated by subsurface flow, which was influenced by precipitation and antecedent moisture conditions. A threshold value of 0.18 m3/m3 of mean hillslope soil moisture was observed for the initiation of subsurface flow. High precipitation intensity (i.e. 75.0 mm/day) substantially increased subsurface flow for all soil textures. In addition, the sensitivity of the bare soil hillslope to rainfall patterns was more than two times higher than that of the vegetated (i.e. grassland, tea garden and forest) hillslope. These findings suggest that extreme precipitation events and land‐use change will increase the risks of subsurface flow on hillslopes. Therefore, optimal fertilizer application strategy and land‐use planning should be proposed for controlling the hillslope nonpoint nutrient losses.  相似文献   
12.
结合不同类型的大田试验数据,分别利用瞬时剖面法、HYDRUS反演方法、直接方法反求土壤水力参数。将所得参数代入HYDRUS正演程序,分别预测试验后期剖面含水率,并与实测值对比。结果表明,瞬时剖面法与HYDRUS反演方法预测结果相近且优于直接方法。在实测范围内,前2种方法所得参数虽略有差异,但预测结果和表征的水力性质基本一致。直接方法由于试验尺度小、对土壤扰动大,结果并不理想。对比求参工作量,2种反演方法小于直接方法。2种反演方法计算成本对比,瞬时剖面法比HYDRUS反演方法更有优势。  相似文献   
13.
The saturated and near‐saturated hydraulic conductivity of soils, ku, is a sensitive indicator of soil structure and a key parameter for solute transport and soil aeration. In this contribution, we present and numerically investigate a double‐disk method to determine ku in the laboratory by steady‐state percolation at different suction steps. Tension infiltration of water takes place at the top of a soil column through a porous disk with a smaller diameter than the soil sample. This leaves part of the soil surface open and ensures a proper soil ventilation. Drainage takes place at the base through a porous disk with the full diameter of the soil column at exactly the same tension as applied to the top boundary. Since the infiltration area is less than the percolation area, the water flow diverges and the equality of steady flow rate and hydraulic conductivity, which characterizes the standard unit‐gradient experiment, is no longer valid. To develop a general relationship between observed steady flow rate and unsaturated hydraulic conductivity, the experiment was simulated with the Richards‐equation solver HYDRUS 2D/3D, for twelve different soil classes. We found for tensions in the range 1 cm < 10 cm, an infiltration disk diameter of 4.5 cm diameter and a sample diameter of 8 cm diameter that the flux rate at any given tension was about 0.7 times the respective hydraulic conductivity, with an error of less than 10%.  相似文献   
14.
Sub-surface irrigation with porous clay pipe can be an efficient, water saving method of irrigation for many less developed arid and semi-arid regions. Maximizing the efficiency of clay pipe irrigation requires guidelines and criteria for system design and operation. In this study, experimental and simulated (with HYDRUS (2D/3D)) soil wetting patterns were investigated for sub-surface pipe systems operating at different water pressures. Predictions of the soil water content made with HYDRUS were found to be in good agreement (R2 = 0.98) with the observed data. Additional simulations with HYDRUS were used to study the effects of various design parameters on soil wetting. Increasing the system pressure increased the size of the wetted zone. The installation depth affects the recommended lateral spacing as well as the amount of evaporative water loss. For a given water application, the potential rate of surface evaporation affected the shape of the wetted region only minimally. Soil texture, due to its connection to soil hydraulic conductivity and water retention, has a larger impact on the wetting geometry. In general, greater horizontal spreading occurs in fine texture soils, or in the case of layered soils, in the finer textured layers.  相似文献   
15.
通过克州沙拉塔纳农田试验区实测资料的分析,建立了作物生长条件下土壤水分和盐分运移模型.在室内进行了土壤水分特征曲线,确定了扰动粘质粉壤土土壤水分特征曲线;再用HYDRUS模型反演计算了在室内外难以确定的土壤水分传导度,并用Van Genuchten方程拟合了参数.以这些参数为基础,模拟计算了气象条件类似土壤相同的格达良灌区土壤水盐运动规律,得出小麦作物从苗期至成熟期土壤含盐浓度随时间分布状况,为研究节水灌溉改良盐碱地课题提供科学数据.  相似文献   
16.
膜下滴灌技术是干旱农业区高效节水灌溉的重要手段,以玛纳斯河流域石河子试验站实测数据为基础,运用HYDRUS-2D模型对1膜4行方式下新疆棉田的土壤水运动进行了二维模拟,探讨膜下滴灌在1膜4行覆膜方式下土壤水平衡状况。结果表明,1膜4行覆膜方式下的膜下滴灌技术使新疆棉田无效水分蒸发量以及深层渗漏量大大减少,数值模拟方法可较好地模拟新疆棉田的土壤水平衡状态。上述研究可为宏观尺度上的膜下滴灌模拟与研究提供借鉴,同时对保障干旱区农业生产也有积极作用。  相似文献   
17.
The intensive agricultural use of soils in the Brittany region (western France) has increased the need for a better understanding of soil water dynamics. The aim of the present study is to compare quantitatively the differences produced by two agricultural practices on soil hydraulic properties (water retention curve and hydraulic conductivity) as well as the infiltration and drainage fluxes in the soils. This study was carried out on two experimental plots managed in the same way for 22 years. The two practices were continuous maize fertilized with mineral fertilizer, denoted as MX, and pasture within a ray-grass/maize rotation (3/1 year) with organic fertilization (pig slurry), denoted as PR. The study consisted of measuring soil physical properties in the laboratory and in the field, and estimating water infiltration in the soil of the two plots by recording water pressure heads after simulation of 2-h artificial rainfall with an intensity of 17 mm/h. We applied the van Genuchten model to describe the water retention and hydraulic conductivity curves (θ(h) and K(h)) for each soil horizon of the two plots. Hydrus-2D and ID softwares were used to construct a numerical model of water movement in the two soils. This model was used to quantify the infiltration rate, deep drainage and actual evaporation fluxes during the artificial rainfall experiment.The vertical influence of agricultural practices in both plots appears to be limited to the uppermost 35 cm. Deeper in the B horizon, there are only very slight differences in the hydraulic properties between the two plots. In the top soil horizons (H1–H5 and H6), the two soil properties mostly affected by practices are the hydraulic conductivity and the α parameter of the van Genuchten model. At the lowest pressure head studied here (−1.5 kPa), hydraulic conductivity in a given horizon differs by more than one order of magnitude between the two plots. The model reproduces quite satisfactorily the observed pressure heads in plot PR at all depths, in the rainy period as well as in the water redistribution period (efficiency >0.77). Results are less good for the MX plot, with efficiency ranging from 0.49 to 0.84 depending on the horizon. The different sources of simulation errors are identified and discussed. For the MX plot, the soil water movement model succeeds in reproducing the infiltration excess runoff observed in the field, allowing us to calculate that it accounts for 9% of the applied rainfall. No surface runoff or ponding appears in the PR plot during the artificial rainfall experiment. In the PR plot, the simulated deep drainage flux increases more rapidly than in the MX plot. The lower hydraulic conductivity in the top soil horizon of the MX plot compared with the PR plot appears to reduce the infiltration rate as well as the deep drainage flux. It also decreases the upward flow of water to the soil surface when the water content in the top soil layer is depleted by evaporation flux. The model simulation could be improved by a more precise representation of the soil structure, particularly the location, size and frequency of clods as well as the variability of hydraulic properties. However, we need to strike a balance between improving the quality of the simulation even further and the practical constraints and efforts involved in measuring the soil hydraulic properties.  相似文献   
18.
Estimating groundwater recharge in response to increased atmospheric CO2 concentration and climate change is critical for future management of agricultural water resources in arid or semi-arid regions. Based on climate projections from the Intergovernmental Panel on Climate Change, this study quantified groundwater recharge under irrigated agriculture in response to variations of atmospheric CO2 concentrations (550 and 970 ppm) and average daily temperature (+1.1 and +6.4 °C compared to current conditions). HYDRUS 1D, a model used to simulate water movement in unsaturated, partially saturated, or fully saturated porous media, was used to simulate the impact of climate change on vadose zone hydrologic processes and groundwater recharge for three typical crop sites (alfalfa, almonds and tomatoes) in the San Joaquin watershed in California. Plant growth with the consideration of elevated atmospheric CO2 concentration was simulated using the heat unit theory. A modified version of the Penman-Monteith equation was used to account for the effects of elevated atmospheric CO2 concentration. Irrigation amount and timing was based on crop potential evapotranspiration. The results of this study suggest that increases in atmospheric CO2 and average daily temperature may have significant effects on groundwater recharge. Increasing temperature caused a temporal shift in plant growth patterns and redistributed evapotranspiration and irrigation water use earlier in the growing season resulting in a decrease in groundwater recharge under alfalfa and almonds and an increase under tomatoes. Elevating atmospheric CO2 concentrations generally decreased groundwater recharge for all crops due to decreased evapotranspiration resulting in decreased irrigation water use. Increasing average daily temperature by 1.1 and 6.4 °C and atmospheric CO2 concentration to 550 and 970 ppm led to a decrease in cumulative groundwater recharge for most scenarios. Overall, the results indicate that groundwater recharge may be very sensitive to potential future climate changes.  相似文献   
19.
反演分析土壤-秸秆水分运动参数   总被引:1,自引:1,他引:0  
通过潜水均衡试验站土壤测渗仪资料,以新疆具有一定代表性的轻粘土为例,利用无秸秆覆盖和地表以下35 cm秸秆覆盖的实测资料,研究作物生长条件下土壤水分和盐分运移模型参数,通过HYDRUS模型反演确定了土壤水分运动参数和秸秆水分参数。并与测筒实测数据进行了比较。通过计算,无论是模拟计算的土壤水分运动参数还是秸秆水分参数都与相应的测筒观测值具有良好的一致性,模拟值与实测值吻合较好,这表明了轻粘土土壤水分运动参数和秸秆水分运动参数的确定是合理的。这些参数的确定将为更好地模拟秸秆覆盖条件下土壤水盐运移规律,研究秸秆覆盖层阻止土壤潜水蒸发抵制土壤盐分向上运动提供科学数据。  相似文献   
20.
HYDRUS模型在干旱区灌溉与土壤盐化关系研究中的应用   总被引:7,自引:0,他引:7  
以新疆阿瓦提县丰收灌区为例,利用HYDRUS数值模型分析了灌溉水量对土壤盐分分布的影响,特别是耕作层土壤盐分的变化情况,同时也对当地实行的冬季灌水进行了分析,为农业技术操作提供了依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号