首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8668篇
  免费   430篇
  国内免费   1632篇
林业   141篇
农学   422篇
基础科学   3696篇
  2458篇
综合类   2506篇
农作物   330篇
水产渔业   33篇
畜牧兽医   151篇
园艺   174篇
植物保护   819篇
  2024年   57篇
  2023年   189篇
  2022年   293篇
  2021年   334篇
  2020年   314篇
  2019年   414篇
  2018年   340篇
  2017年   474篇
  2016年   674篇
  2015年   436篇
  2014年   432篇
  2013年   542篇
  2012年   755篇
  2011年   695篇
  2010年   647篇
  2009年   548篇
  2008年   454篇
  2007年   480篇
  2006年   404篇
  2005年   415篇
  2004年   288篇
  2003年   276篇
  2002年   174篇
  2001年   175篇
  2000年   166篇
  1999年   131篇
  1998年   94篇
  1997年   98篇
  1996年   67篇
  1995年   56篇
  1994年   49篇
  1993年   71篇
  1992年   49篇
  1991年   41篇
  1990年   33篇
  1989年   23篇
  1988年   14篇
  1987年   17篇
  1986年   4篇
  1985年   4篇
  1983年   2篇
  1981年   1篇
排序方式: 共有10000条查询结果,搜索用时 256 毫秒
921.
通过室内入渗试验,研究了膜孔灌条件下不同氮肥的转化特性。结果表明,施入铵态氮肥后土壤铵态氮含量在膜孔中心垂向表层0~5.5 cm内变化,再分布15 d土壤铵态氮损失了68%,再分布20 d铵态氮基本完全转化;随再分布时间的延长,硝态氮的含量在土壤表层10 cm范围内逐渐增加,在10 cm以下,硝态氮的含量7 d前先增大再减小,7 d后一直增大。施入硝态氮肥后,硝态氮含量7 d内变化很小,7~10 d内明显减少,10 d以后减少缓慢。施入尿素后,土壤中铵态氮在5 d后达到峰值,20 d后下降至土壤的本底值;而土壤硝态氮一直平稳升高,于施肥20 d后达到最大值;土壤铵态氮含量和硝态氮含量均沿着远离膜孔中心的方向逐渐减小。  相似文献   
922.
滴灌条件下杨树人工林土壤的水分运移   总被引:3,自引:0,他引:3  
采用田间土壤剖面观测法,对北京永定河故道沙地上地表滴灌栽培的杨树人工林的土壤水分运移规律进行研究,在滴头流量恒定为4 L·h-1的条件下,试验和测定不同滴灌时长和停灌后土壤湿润锋的运移距离和土壤湿润体的形态.结果表明:土壤湿润锋随着滴灌时长的增加在垂直和水平方向上的运移距离逐渐增大,每增加1h滴灌时长,土壤湿润锋的垂直运移距离的增幅逐渐减小,水平运移距离的增幅则大小不一;在各时长滴灌停灌后,土壤湿润锋将继续在垂直方向和水平方向上运移1~3h,在垂直方向上的继续运移距离为2~10 cm,除在土壤最深处的水平继续运移距离明显较大外,在各土壤深处水平方向上的继续运移距离为1 ~ 10 cm;在持续滴灌1~6 h后,土壤湿润锋最终可以垂直运移到36 ~ 69 cm,水平运移到32~57 cm,持续滴灌3~4h后即可在0~40 cm土层内形成以滴头为圆心,半径30~ 40 cm的土壤湿润体;持续滴灌1~3h后土壤湿润体形态为逐渐增大的扁半椭球体,持续滴灌4~6h后土壤湿润体形态为逐渐增大的长半椭球体.  相似文献   
923.
滴灌量对冬小麦耗水特性和干物质积累分配的影响   总被引:2,自引:0,他引:2  
为给滴灌冬小麦高产栽培的水分管理提供理论依据,在播前足墒和越冬前灌水750 m33·hm-2的条件下分析了起身后不同滴灌量(2550、3150和3750 m3·hm-2,分别用W1、W2、W3表示)对冬小麦耗水及干物质积累、分配的影响.结果表明,随滴灌量的减少,冬小麦孕穗期至花后20 d的0~100 cm土层含水量明显降低,但土壤含水量沿毛管的横向差异增大,总耗水量减少,土壤贮水的消耗量明显增加;群体的叶面积指数和干物质积累量降低,尤其是远离毛管处下降更明显;开花前营养器官贮藏同化物向籽粒的转运量、运转率及对籽粒的贡献率增加,开花后干物质同化量和对籽粒的贡献率显著降低;籽粒产量降低,灌溉水利用效率呈增加趋势.3个处理中,W2的水分利用效率最高,产量与W3差异不显著.在本试验条件下,起身后滴灌冬小麦的适宜灌溉定额为3150~3750 m3·hm2.  相似文献   
924.
Abstract

The objective of this study was to investigate the influence of different nitrogen fertiliser application levels in combination with different defoliation intervals on the dry matter (DM) production and water‐use efficiency of ryegrass (Lolium multiflorum,) cv. Midmar. In a field trial, four nitrogen levels (0, 150, 300 and 450 kg N ha?1) were combined with five defoliation intervals (every 2, 4, 6 and 8 weeks and twice a season). Soil moisture levels were measured with a neutron hydroprobe and were used to schedule irrigation. The dry matter production, nitrogen‐use efficiency (NUE), plant DM content and water‐use efficiency were influenced (P<0.01) by nitrogen level, defoliation interval, and the interaction between these factors. Total DM production varied from 64 to 20 922 kg DM ha?1. Dry matter production per unit of applied N decreased with an increase in N level within a defoliation interval. The plant DM content varied from 14.0% to 35.6%. The plant DM content decreased (P<0.05) with increasing N applications, while a lengthening of the defoliation interval resulted in an increase (P<0.05) in the DM content. No difference (P>0.05) was found in total water used when plants received N. Water‐use efficiency varied from 1.2 to 25.8 kg DM ha?1 mm?1 water received.  相似文献   
925.
Abstract

Optimal water and nutrient treatment effects on soil mi-crobial characteristics, including microbial functional diversity and mi-crobial biomass carbon (C) and nitrogen (N) were assessed at a loblolly pine plantation on a Sandhills site after 6 years of continuous fertilization and irrigation. Fertilization significantly increased soil C and N and microbial C and N. Irrigation significantly increased soil C and N, and microbial C. Fertilization, irrigation, and their interaction changed soil microbial selection of carbon compounds, but did not influence the numbers of carbon compounds utilized by soil microbes, as measured by the BIOLOG method suggesting that soil microbial species may have changed. The increases in soil microbial biomass and soil C and N indicate that the fertilization and irrigation treatments have had a positive effect on soil productivity on this very sandy site.  相似文献   
926.
《Journal of Crop Improvement》2013,27(1-2):247-275
SUMMARY

Soil salinity is assuming menacing proportions for production of agricultural and horticultural crops in South India. South India comprises of Andhra Pradesh (AP), Tamil Nadu (TN), Karnataka, Kerala, Goa, and Islands in Bay of Bengal (Andaman and Nicobar) and Arabian Sea (Lakshadweep). It comprises central uplands, Deccan plateau (Karnataka plateau and Telangana plateau of AP), Nilgiri hills of TN, South Sahiailri, Eastern hills (Eastern Ghats, TN, upland) and Coastal Plains. The rainfall ranges from 400 to 500 mm in AP, 450 to 1300 mm in Karnataka, 500 to 1215 mm in TN, 100 to 450 mm in Kerala. Climate is mainly semi-arid in nature. Red soils (Alfisols, Inceptisols, and Entisols) make up about 60–65% and are well drained, blacksoils (Vertisols and Inceptisols) comprise about 20–25% and the rest are coastal sands. Soil salinity problems are encountered in almost all the districts in Karnataka and AP. The area extends to about 0.176 million ha in AP, 0.2 million ha in Karnataka, 0.0427 million ha in TN and about 0.03 million ha in Kerala. Introduction of canal irrigation water and use of underground saline waters accelerated the appearance of salt affected soils. Soil salinity observed in South India ranges from hydrometphic saline soils in Kerala to highly saline (EC 20–30 dS m?1) in Karnataka and AP. Saline soils were classified in to Natrargids or Solarthrids at subgroup level depending on the occurance of nitric or salic horizon within few centimetres of the surface. Soil salinity has reduced crop yields upto 50% and consequently cropping has been abandoned in many areas. Excess soluble salts can be removed through scrapping the surface salt crust or flushing and leaching or through subsurface drainage depending on the problem. Crops also vary in their ability to tolerate salinity at different stages of growth. In most crops subjected to irrigations with saline waters, germination and early seedling stages are generally the most sensitive and their tolerance increases with age. Salt tolerant varieties and nutrient management of crops in saline soils are important solutions for crop production under saline soils.  相似文献   
927.
《Journal of Crop Improvement》2013,27(1-2):353-386
SUMMARY

Salinity in soil and water is irrevocably associated with irrigated agriculture throughout the world and as a result requires that salt management becomes an integral part of the production system. With careful water management, it is possible to sustain irrigated agriculture in areas with saline soil and saline groundwater with and without subsurface drainage. The results from two field projects conducted in an area with saline soils and saline groundwater demonstrated the type of irrigation systems and management needed to sustain production of moderately salt tolerant and tolerant crops. During the first study at Murrieta farms, yields of cotton and sugar beet were maintained using both saline and non-saline water for irrigation when pre-plant irrigation and rainfall were adequate to maintain soil salinity at a tolerable level. Wheat production was reduced in areas that used saline water for irrigation. Use of saline water containing toxic elements such as boron for irrigation poses a threat to the sustainability of the system. The second study evaluated the management of furrow and subsurface drip irrigation in the presence of shallow saline groundwater. Careful management of the furrow system during pre-plant irrigation and the first irrigation of the growing season was required to prevent waterlogging. It was possible to manage the subsurface drip system to induce significant crop water use from shallow groundwater. Rainfall and pre-plant irrigation were adequate at this site to manage soil salinity.  相似文献   
928.
《Plant Production Science》2013,16(4):401-407
Abstract

The experimental site (Shihezi, Xinjiang, China) is located in an arid area of central Asia with abundant solar radiation of almost 10 daily sunshine hours from April to September. The yield potential in this area appears to be high if sufficient water is supplied. The yields of five soybean (Glycine max (L.) Merr.) cultivars including three semi-indeterminate Chinese cultivars (Shidadou 1, Xindadou 1 and Suinong 11) and two determinate Japanese cultivars (Toyomusume and Toyokomachi) were evaluated over three years. These cultivars were grown under drip irrigation, a high planting density (22.2 plants m-2) and heavy applications of farmyard manure (15 t ha-1). Each cultivar showed a high leaf area index (LAI). In particular, the maximum LAI was greater than 7 over the three years in Shidadou 1 and Toyokomachi. The three Chinese cultivars with a high plant height had a low LAI in the upper layers of the canopy, but the two Japanese cultivars with a short plant height had a higher LAI in the middle or upper layers. Toyokomachi and Shidadou 1 had the highest seed yield, followed by Toyomusume. In particular, the seed yield of Toyokomachi was as high as 8.67 t ha-1 on the average of the three years. These high-yielding cultivars had more than 60 pods per plant (1350 m-2). The high yields in this experiment could be due to the large amount of intercepted radiation owing to the high LAI and abundant solar radiation, frequent and sufficient irrigation by the drip irrigation, and large number of pods as a sink.  相似文献   
929.
《Plant Production Science》2013,16(3):337-346
Abstract

The effects of nitrogen (N) application (32, 72 and 112 kg N ha-1 in 2000, and 32, 92 and 152 kg N ha-1 in 2001) and water-saving irrigation and their interaction on grain yield and yield components of the rice cultivar Champa-Kamphiroozi, which is a local cultivar in a semi-arid area in the south of Islamic Republic (I.R.) of Iran, were investigated. The plants were cultivated under sprinkler irrigation (1.0 ETp and 1.5 ETp), intermittent flooding (1-day and 2-day intervals) and continuous flooding (control). The experiments were conducted on a clay loam-clay soil under a semi-arid environment using four replications in a split plot design with irrigation method as main plots and N levels as subplots. The results indicated that intermittent flooding irrigation at 2-day intervals was as effective as continuous flooding for grain yield, showing high water-use efficiency (WUE). The soil moisture tension in the root zone before each irrigation under this condition was –300 to –400 cm. Sprinkler irrigation and intermittent flooding increased WUE by 20 to 60%, compared with continuous flooding, and the increase in N application rate to 112-152 kg ha-1 increased grain yield under any irrigation condition. Under sprinkler irrigation, grain yield was low and percentage of unfilled grain was high, although WUE was high. However, by adopting sprinkler irrigation, the amount of nitrogen fertilizer application necessary for cultivation was reduced. Furthermore, when nitrogen application must be limited due to groundwater pollution, the amount of nitrogen fertilizer necessary for cultivation can be reduced.  相似文献   
930.
《Plant Production Science》2013,16(5):592-600
Abstract

This research was conducted to determine the yield and water-use efficiency of maize under fixed and variable alternate furrow irrigation (fixed AFI, variable AFI) and every furrow irrigation (EFI) at different irrigation intervals in areas with shallow and deep groundwater. In variable AFI, water was applied to the furrow, which was dry in the previous irrigation cycle. The results indicated that even at 4-day irrigation intervals the water needs of maize on a fine textured soil in both areas (with deep and shallow water table) are not met by AFI. The decrease in grain yield due to water stress was mainly due to the decrease in the number of grains per cob and to a lesser extent to the decrease in 1000-grain weight. At the Kooshkak site with shallow groundwater (between 1.31 and 1.67 m), grain yields in AFI at 4- and 7-day intervals were comparable to those obtained in EFI at 7- and 10-day intervals, respectively. This might be due to the contribution of groundwater to the water use of the plant (about 5-10%). In the Badjgah area, with deep water depth, grain yield in AFI at 7-day intervals was statistically lower than that obtained in EFI at 10-day interval. In AFI, a shorter irrigation interval (4-day) may alleviate the water stress and result in no yield reduction compared with that in EFI at 7-day intervals even though water application was reduced. Furthermore, in the area with a shallow water table, AFI at 7-day intervals may be superior to EFI at 10-day irrigation intervals. When seasonal irrigation water is less than 700 mm, it may be preferable to use AFI at 10-day intervals to increase water-use efficiency, especially in areas with shallow groundwater. In general, when water was insufficient for full irrigation, the relative grain yield (yield per unit water applied) of maize under AFI was higher than those under EFI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号