全文获取类型
收费全文 | 12259篇 |
免费 | 6621篇 |
国内免费 | 259篇 |
专业分类
林业 | 726篇 |
农学 | 1452篇 |
基础科学 | 716篇 |
6147篇 | |
综合类 | 6316篇 |
农作物 | 1084篇 |
水产渔业 | 487篇 |
畜牧兽医 | 1306篇 |
园艺 | 252篇 |
植物保护 | 653篇 |
出版年
2025年 | 399篇 |
2024年 | 612篇 |
2023年 | 702篇 |
2022年 | 811篇 |
2021年 | 796篇 |
2020年 | 844篇 |
2019年 | 860篇 |
2018年 | 682篇 |
2017年 | 942篇 |
2016年 | 1048篇 |
2015年 | 756篇 |
2014年 | 838篇 |
2013年 | 1288篇 |
2012年 | 1298篇 |
2011年 | 1039篇 |
2010年 | 825篇 |
2009年 | 763篇 |
2008年 | 604篇 |
2007年 | 683篇 |
2006年 | 595篇 |
2005年 | 478篇 |
2004年 | 350篇 |
2003年 | 283篇 |
2002年 | 213篇 |
2001年 | 184篇 |
2000年 | 157篇 |
1999年 | 141篇 |
1998年 | 111篇 |
1997年 | 103篇 |
1996年 | 113篇 |
1995年 | 118篇 |
1994年 | 69篇 |
1993年 | 86篇 |
1992年 | 66篇 |
1991年 | 59篇 |
1990年 | 49篇 |
1989年 | 51篇 |
1988年 | 41篇 |
1987年 | 27篇 |
1986年 | 19篇 |
1985年 | 7篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1973年 | 1篇 |
1962年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Joerg Ruehlmann 《Archives of Agronomy and Soil Science》2013,59(8):1159-1176
The Box Plot Experiment in Grossbeeren was set up in 1972 to investigate the efficiency of diverse fertilization strategies within an irrigated vegetable crop rotation system for three different soils. Here, we report on the long-term effects on nitrogen, carbon and energy balances of applying various organic amendments and different amounts of mineral N fertilizer to soils. Fertile soils (sandy loam and clayey silt) were characterized by higher yield and N removal potential by plants, higher acceptable N input amounts, and a higher proportion of total N input recovered by soil N storage and N uptake by plants. After 40 years, organic carbon equilibrium in the soil has not been reached. Rates of change of organic carbon stocks are still affected by the different organic matter levels at the beginning of the experiment. An increasing net N supply increased and organic C input decreased net C gains. Because of the manifold possibilities of producing energy from current or former agricultural land, energetic evaluation of land use needs to become more complex if direct comparisons are to be made. Including the energy contents of organic amendments and soil organic matter in the energy balances would be a first step in this direction. 相似文献
132.
M. Ângelo Rodrigues Sandra Afonso Nelson Tipewa Arlindo Almeida Margarida Arrobas 《Archives of Agronomy and Soil Science》2013,59(12):1630-1645
ABSTRACTRapeseed acreage has been increasing fast in the last few decades and cultivated areas have expanded into lower latitudes because of the high value of its seed. This work evaluates the effect of date of sowing and nitrogen (N) fertilization on crop productivity and N use efficiency in a Mediterranean environment. The experiment was arranged in a split-plot design with the dates of sowing as the main-plots and N rates the sub-plots. Rapeseed recovered 128 to 212 kg N hm-2 before top-dress N application in late winter if sown before the last week of September. Seed yield was very dependent on the date of sowing, varying from 3.4 to 6.2 Mg hm-2 on the first sowing date in September to 0.3 to 1.0 Mg hm-2 on the last sowing date in November. The daily loss in seed production was 68.9 kg hm-2 (or 482.3 kg hm-2 per week) or 1.53 % (or 10.7 % per week). N rate significantly increased seed yield within each sowing date but did not allow late-sowed plants to regain the productivity levels of those sown earlier. Apparent N recovery and agronomic N efficiency were particularly dependent on the growing conditions associated to different sowing dates. 相似文献
133.
Mohammad Noor Hossain Miah Tetsushi Yoshida Yoshinori Yamamoto 《Soil Science and Plant Nutrition》2013,59(1):205-217
Abstract A water culture pot experiment was conducted to analyze the effects of N application during the ripening period (RP) on photosynthesis, dry matter production, and its impact on grain ripening and yield in two semidwarf indica type varieties viz. Gui Zhao 2 (GZ) and BR3 (BR) compared with a japonica type variety Koganemasari (KO) under four N rates viz. 0 (N0), 10 (N10), 20 (N20), and 40 (N40) mg L?1. Results showed that N application enabled to maintain a higher leaf area and delay leaf senescence in both indica and japonica type varieties but the decrease in the rate, of leaf area was higher in the former than in the latter and the rate was reduced with increasing N rates. Flag leaf photosynthesis and SPAD values of N treated plants were higher throughout the RP, showing the presence of a significant correlation either for each variety or all the varieties together. Higher photosynthetic rate was supported by higher leaf chlorophyll (SPAD value basis) content, stomatai conductance, and N concentration in leaf blades. Top dry matter content increased with increasing N rates mainly due to mean leaf area rather than NAR except for BR during RP but it was higher in KO than in GZ and BR. Reduction of shoot weight due to translocation of dry matter to panicles during RP was suppressed by N rates both in GZ and BR while shoot weight increased in the N-treated plants in KO. The dependency of KO on current photosynthates for panicle weight was found to be almost hundred percent while the contribution of stored carbohydrates in shoot before heading to panicle weight in GZ and BR was in the range of 4-27 and 33-54%, respectively and the rest was contributed by current photosynthates. The percentage increased with increasing N rates. Percentage of ripened grains (PRG) increased with increasing N rates in GZ and BR due to the increase in dry matter production and in the photosynthetic rates of apex leaves, despite the larger spikelet number and larger hull size. However, KO showed almost no variation although it had the highest PRG among the varieties. Brown rice yield followed the same pattern as that of PRG in GZ and BR and the highest yield was produced by BR followed by GZ and KO. These results suggest that N application during RP was more effective in increasing yield in the semidwarf indica type varieties than in the japonica type variety. 相似文献
134.
The intact nodules attached to the upper part of soybean roots were exposed to 15N2 and the incorporation of 15N into various soluble nitrogen constituents was investigated. Results indicated that ammonia, a primary product of N2 fixation, was located in more than two compartments. Ammonia reduced from N2 gas seemed to be incorporated firstly into glutamine especially amido-group nitrogen. Newly fixed nitrogen was secondly incorporated into glutamic acid and alanine in this sequence. These results suggested that fixed ammonia was assimilated by glutamine synthetase/glutamate synthase pathway. Turn-over rate of allantoin plus allantoic acid and serine was relatively high, although apparently these compounds were not primary products of newly fixed ammonia. 15N content of allantoin was always higher than that of allantoic acid. 15N incorporation to aspartic acid and asparagine was relatively slow, especially in early period. In bacteroid fraction there is much amount of ammonia comparing with other compounds, while allantoin and asparagine were presented exclusively in cytosol. 15N was incorporated into nitrate within a few minutes especially in bacteroids. 相似文献
135.
《Journal of plant nutrition》2013,36(7):1133-1144
Abstract The evolution of both leaf expansion and chlorophyll content was assessed in potted sweet pepper plants subjected to four different levels of nitrogen (mg N/kg of soil): N1 = 25 (basal dressing); N2 = 50 (basal dressing); N3 = 100 (basal dressing and one side dressing); and, N4 = 150 (basal dressing and two side dressings). In each plant, the first leaves (numbered 1–5) were chosen at the main stem and the next four ramifications. The relative chlorophyll content of leaves 1 to 5, from all treatments, was obtained by a portable chlorophyll meter, SPAD-502, twice a week. The SPAD readings were subsequently converted into total chlorophyll (μ g cm? 2). The plant dry weight, the number of fruits per plant, and the N content of leaves were measured at final harvest (70 d after transplantation, DAT). Until the first side dressing (35 DAT), the increase in chlorophyll content was similar in all treatments, decreasing afterward under the N1 and N2 treatments (leaves 1 and 2), while under the N3 and N4 treatments the increase in the chlorophyll content continued after the first side dressing. The application of the second side dressing (53 DAT) under the N4 treatment induced a subsequent increase in chlorophyll content in all leaves compared with those of N3. An early senescence was observed under the N1 and N2 treatments compared with the others. Applied N in side dressing led to an increase in leaf width (leaves 2–5) and longevity, mainly in leaves 2 and 3, and a subsequent increase under fruit number and fruit dry weight under the N3 and N4 treatments. 相似文献
136.
《Journal of plant nutrition》2013,36(12):2453-2468
Abstract The top three leaves play important roles in biomass production and grain yield of rice (Oryza sativa L.) crop since the three leaves not only assimilate majority of carbon for grain filling during ripening phase, but also provide large proportion of remobilized‐nitrogen (N) for grain development during their senescence. The objectives of this study were to (a) compare senescence of the top three leaves and (b) compare the changes in N, chlorophyll, and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) contents of the top three leaves after their full expansion in field‐grown rice plants. When the basis of comparison among the top three leaves was plant age in terms of days after transplanting (DAT), senescence generally started earliest in ?3rd leaf, intermediate in ?2nd leaf, and latest in flag leaf. If the basis of comparison among the top three leaves was leaf age in terms of days after full leaf expansion (DAFE), it was not clear which leaf senesced earlier. Senescence rate was generally greatest in flag leaf, intermediate in ?2nd leaf, and smallest in ?3rd leaf. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content declined earlier, and at a faster rate than N and chlorophyll contents during the senescence of all top three leaves. Correlation analysis indicated a close relationship between N and chlorophyll contents. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content correlated with N content better than with chlorophyll content. The suitability of N, chlorophyll, and Rubisco contents for quantifying the leaf senescence of field‐grown rice plants is discussed. 相似文献
137.
Understanding the fate and turnover of the pools that comprise dissolved organic nitrogen (DON) in soil is key to determining its role in ecosystem functioning. We investigated seasonal changes of dissolved organic carbon (DOC) and nitrogen (DON) concentrations within four molecular weight (MW) size fractions across an altitudinal gradient (from lowland to montane systems), and quantified individual amino acids and amino acid constituents of oligopeptidic-N, as well as nitrate and ammonium. We tested two ideas: first, that DON is more abundant than DIN in low-productivity relative to high-productivity grassland ecosystems; and second, that the abundance of peptides and amino acids is likewise greater in low- than high-productivity grassland. The most productive site had a history of inorganic fertiliser application, and hence in this site alone DIN was more abundant than DON. Plant productivity varied 3-fold between the other sites, and DON was generally at higher concentrations in the sites of lower productivity both in absolute terms as well as relative to DIN, with a large increase observed in spring. The fraction containing the highest concentration of the DON had a MW of >100 kDa, and in summer and autumn this fraction was more abundant at the lowest productivity site. We conclude that relationships between the abundance of DON relative to DIN and ecosystem productivity is dependent on season, and hence more complex than previously suggested, and that peptides are a dynamic and potentially nutritionally significant component of DON. 相似文献
138.
Aiping Zhang Ji Gao Ruliang Liu Zhe Chen Shiqi Yang Zhengli Yang Hongbo Shao Qingwen Zhang Nagai Yoshikazu 《Land Degradation u0026amp; Development》2016,27(4):1255-1265
High N fertilizer and flooding irrigation applied to rice in anthropogenic‐alluvial soil often result in N leaching and low use efficiency of applied fertilizer N from the rice field in Ningxia irrigation region in the upper reaches of the Yellow River. Sound N management practices need to be established to improve N use efficiency while sustaining high grain yield levels and minimize fertilizer N loss to the environment. We investigated the effects of Nursery Box Total Fertilization technology (NBTF) on N leaching at different rice growing stages, N use efficiency and rice yield in 2010 and 2011. The four fertilizer N treatments were 300 kg N ha−1 (CU, Conventional treatment of urea at 300 kg N ha−1), 120 kg N ha−1 (NBTF120, NBTF treatment of controlled‐release N fertilizer at 120 kg N ha−1), 80 kgN ha−1 (NBTF80, NBTF treatment of controlled‐release N fertilizer at 80 kg N ha−1) and no N fertilizer application treatment (CK). The results showed that the NBTF120 treatment increased N use efficiency, maintained crop yields and substantially reduced N losses to the environment. Under the CU treatment, the rice yield was 9634 and 7098 kg ha−1, the N use efficiency was 31·6% and 34·8% and the leaching losses of TN were 44·51 and 39·89 kg ha−1; NH4+‐N was 5·26 and 5·49 kg ha−1, and NO3−‐N was 27·94 and 26·22 kg ha−1 during the rice whole growing period in 2010 and 2011, respectively. Compared with CU, NBTF120 significantly increased the N use efficiency and decreased the N losses from the paddy field. Under NBTF120, the N use efficiency was 56·3% and 51·4%, which was 24·7% and 16·6% higher than that of CU, and the conventional fertilizer application rate could be reduced by 60% without lowering the rice yield while decreasing the leaching losses of TN by 16·27 and 14·36 kg ha−1, NH4+‐N by 0·90 and 1·84 kg ha−1, NO3−‐N by 110·6 and 10·14 kg ha−1 in 2010 and 2011, respectively. Our results indicate that the CU treatment resulted in relatively high N leaching losses, and that alternative practice of NBTF which synchronized fertilizer application with crop demand substantially reduced these losses. We therefore suggest the NBTF120 be a fertilizer application alternative which leads to high food production but low environmental impact. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
139.
Anna Michalczyk Kurt Christian Kersebaum Lisa Heimann Marco Roelcke Qin‐Ping Sun Xin‐Ping Chen Fu‐Suo Zhang 《植物养料与土壤学杂志》2016,179(2):270-285
Ammonia (NH3) volatilization is an important N loss pathway in intensive agriculture of the North China Plain (NCP). Simulation models can help to assess complex N and water processes of agricultural soil–crop systems. Four variations (Var) of a sub‐module for the deterministic, process‐based HERMES model were implemented ranging from simple empirical functions (Var 3 and 4) to process‐oriented approaches (Var 1 and 2) including the main processes of NH3 volatilization, urea hydrolysis, nitrification from ammonium‐based N fertilizer, and changes in soil solution pH. Ammonia volatilization, plant growth, and changes in ammonium and nitrate pools in the soil over several winter wheat–summer maize double‐crop rotations at three locations in the NCP were simulated. Results were calibrated with two data sets (Dongbeiwang 1, Shunyi) and validated using two data sets (Dongbeiwang 2, Quzhou). They showed that the ammonia volatilization sub‐module of the HERMES model worked well under the climatic and soil conditions of N China. Although the simpler equations, Var 3 and 4, showed lower deviations to observed volatilization across all sites and treatments with a mean absolute error (MAE) of 1.8 and 1.4 in % of applied N, respectively, compared to process‐oriented approaches, Var 1 and 2, with a MAE of 2.2 and 1.9 in % of applied N, respectively. Environmental conditions were reflected better by the process‐oriented approaches. Generally, simulation results were satisfying but simulated changes in topsoil pH need further verification with measurements. 相似文献
140.
Abstract. The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha−1 yr−1 ) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from −5 (+N, drained) to +9 (no N and undrained) kg K ha−1 yr−1 and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching. 相似文献