首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   66篇
  国内免费   82篇
林业   38篇
农学   470篇
基础科学   3篇
  17篇
综合类   473篇
农作物   120篇
水产渔业   19篇
畜牧兽医   66篇
园艺   49篇
植物保护   97篇
  2024年   1篇
  2023年   15篇
  2022年   21篇
  2021年   13篇
  2020年   14篇
  2019年   25篇
  2018年   32篇
  2017年   16篇
  2016年   32篇
  2015年   23篇
  2014年   35篇
  2013年   41篇
  2012年   53篇
  2011年   54篇
  2010年   56篇
  2009年   43篇
  2008年   55篇
  2007年   51篇
  2006年   57篇
  2005年   45篇
  2004年   44篇
  2003年   44篇
  2002年   57篇
  2001年   46篇
  2000年   32篇
  1999年   47篇
  1998年   21篇
  1997年   39篇
  1996年   24篇
  1995年   33篇
  1994年   27篇
  1993年   34篇
  1992年   34篇
  1991年   24篇
  1990年   32篇
  1989年   23篇
  1988年   24篇
  1987年   19篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   1篇
  1982年   6篇
  1981年   4篇
  1980年   7篇
  1979年   10篇
  1978年   8篇
  1977年   4篇
  1976年   2篇
  1955年   2篇
排序方式: 共有1352条查询结果,搜索用时 109 毫秒
41.
B. Zhang    C. M. Lu    F. Kakihara  M. Kato 《Plant Breeding》2002,121(4):297-300
The effect of genome composition and cytoplasm on petal colour was studied in Brassica. Three accessions of yellow‐petalled B. rapa (2n= 20, AA) were crossed with a white‐petalled B. oleracea var. alboglabra (2n= 18, CC) and with three cream‐yellow‐petalled B. oleracea var. gongylodes (2n= 18, CC) to produce resynthesized B. napus (2n= 38, AACC or CCAA) and sesquidiploids (2n= 29, AAC or CAA). Petal colour was measured with a Hunter automatic colour difference meter. The results revealed that petal colour in Brassica is controlled by nuclear genes and by cytoplasmic factors. Additive and epistatic gene effects were involved in the action of nuclear genes. When crosses were made between yellow‐petalled B. rapa and white‐petalled B. oleracea var. alboglabra, significant additive, epistatic and cytoplasmic effects were found. White petal colour was partially epistatic over yellow petal colour. When crosses were made between yellow‐petalled B. rapa and cream‐yellow‐petalled B. oleracea var. gongylodes, only epistatic effects were detected. Yellow petal colour was epistatic over cream‐yellow.  相似文献   
42.
Summary A number of reports have indicated differences in reciprocal families of Solanum tuberosum when intergroup hybrids were studied. Questions have been raised concerning the potential magnitude, frequency, and genetic basis for such differences. In this study, exact reciprocal crosses were made using parents characterized by different maturities and having different cytoplasmic sources within Solanum tuberosum in order to substantiate previous claims of reciprocal differences and to clarify the nature of such differences.Field trials revealed reciprocal differences which were large and highly significant. Reciprocal yield differences of up to 115% were observed when parents of opposite maturities were used. In seven crosses, the higher-yielding reciprocal always had the higher-yielding parent as the maternal parent. Significant reciprocal differences for flowering and vine maturity were also observed between some families. The F2 populations were generated for one set of reciprocals and the reciprocal differences in the F2 generation seemed to be substantially reduced relative to the F1 generation.It is concluded that the occurrence of large reciprocal differences seems to depend more upon having parents of opposite maturity than upon the taxonomic origin of the parent's cytoplasm. This, in conjunction with the reduced F2 reciprocal differences, suggests that observed differences may be due to very persistent maternal effects or a type of dauermodification, rather than true cytoplasmic inheritance.Cooperative Investigation of U.S. Department of Agriculture, Science and Education Administration. Agricultural Research and the Wisconsin Agricultural Experiment Station.  相似文献   
43.
Sorghum midge [Stenodiplosis sorghicola (Coquillett)] is an important pest of grain sorghum, and host plant resistance is one of the important components for the management of this pest. We studied the inheritance of resistance to this insect involving a diverse array of midge-resistant and midge-susceptible genotypes in India and Kenya. Testers IS 15107, TAM 2566, and DJ 6514, which were highly resistant to sorghum midge in India, showed a greater susceptibility to this insect in Kenya. The maintainer lines ICSB 88019 and ICSB 88020 were highly resistant to sorghum midge in India, but showed a susceptible reaction in Kenya; while ICSB 42 was susceptible at both the locations. General combining ability (GCA) effects for susceptibility to sorghum midge for ICSA 88019 and ICSA 88020 were significant and negative in India, but such effects were non-significant in Kenya. The GCA effects of ICSB 42 for susceptibility to sorghum midge were significant and positive at both the locations. The GCA effects were significant and positive for Swarna, and such effects for IS 15107 and TAM 2566 were negative at both the locations. GCA effect of DJ 6514 were significant and negative in India, but non-significant and positive in Kenya; while those of AF 28 were significant and positive during the 1994 season in India, but significant and negative in Kenya. Inheritance of resistance to sorghum midge is largely governed by additive type of gene action. Testers showing resistance to sorghum midge in India and/or Kenya did not combine with ICSA 88019 and ICSA 88020 to produce midge-resistant hybrids in Kenya. Therefore, it is essential to transfer location specific resistance into both parents to produce midge-resistant hybrids.  相似文献   
44.
Broad-few-leaflets and outwardly curved wings: two new mutants of chickpea   总被引:3,自引:0,他引:3  
This study was aimed at the induction of morphological mutations for increasing genetic variability and making available additional genetic markers for linkage studies in chickpea (Cicer arietinum L.). A wilt‐resistant, well‐adapted chickpea cultivar of central India,‘JG 315’(Jawahar gram 315), was used for the induction of mutations. Seeds presoaked in distilled water for 2 h were treated with ethyl methane sulphonate (EMS) using six different concentrations (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6%) and two different durations (6 and 8 h). Several morphological mutants were identified in M2. One of the mutants, isolated from a treatment of 0.3% EMS for 8 h, had five to nine large leaflets per leaf in comparison with 11‐17 normal‐sized leaflets per leaf observed in the parental cultivar ‘JG 315′. The mutant was designated broad‐few‐leaflets. Many leaves of this mutant showed a cluster of three to five overlapping leaflets at the terminal end. The other mutant, designated outwardly curved wings, was isolated from the 0.5% EMS treatment for 6 h. In this mutant, the wings were curved outwards, exposing the keel petal, while the wings in typical chickpea flowers are incurved and enclose the keel. The lines developed from the broad‐few‐leaflets and outwardly curved wings mutants were named JGM 4 (Jawahar gram mutant 4) and JGM 5, respectively. Inheritance studies indicated that each of these mutant traits is governed by a single recessive gene. The gene for broad‐few‐leaflets was designated bfl and the gene for outwardly curved wings was designated ocw. The locus bfl was found to be linked with the locus lg (light green foliage) with a map distance of 18.7 ± 6.3 cM.  相似文献   
45.
The objective of the present research was to study the inheritance of reduced plant height in the sunflower line Dw 89. Plants of the cytoplasmic male sterile version of this line, cmsDw 89 (mean plant height of 47.4 cm) were crossed with plants of the restorer line RHA 271 (mean of 120.9 cm). F1 plants averaged 120.4 cm, which indicated dominance of standard over reduced plant height. F2 plants followed a segregation pattern of 1 : 15 (reduced : normal height), suggesting that reduced plant height in Dw 89 is controlled by alleles at two loci, designated Dw1 and Dw2. Class assignment in the F2 was confirmed through the evaluation of the F3 generation. Backcrosses to Dw 89 segregated with 1 : 3 (reduced : normal height) ratios, which confirmed the digenic inheritance of the trait. The evaluation of plant height distributions in F3 families suggested possible genetic interaction between the Dw1 and Dw2 loci.  相似文献   
46.
Kernel texture is an important characteristic for both the milling and the end-use quality of wheat (Triticum aestivum L.). Gene sequence variation and mutations to the two puroindoline genes (Pina and Pinb), located at the Ha locus on chromosome 5DS, account for the majority of variation in wheat kernel texture. Other factors also influence kernel texture, including effects associated with different maternal parent backgrounds. To investigate the effect of two hard puroindoline alleles in different maternal backgrounds, a population of 228 recombinant inbred lines (RILs) derived from a reciprocal cross between two wheat cultivars ID377s (Pina-D1b/Pinb-D1a) and Klasic (Pina-D1a/Pinb-D1b) were examined in two succeeding generations (F7 & F8). Kernel texture was determined using the Single Kernel Characterization System (SKCS) and the RIL puroindoline haplotype was identified by the sequence-specific PCR amplification of each gene. Analysis of variance identified a significant (P 0.001) effect of the maternal parent and puroindoline mutation on kernel texture. RILs containing the Pina-D1b mutation were significantly harder than lines containing the Pinb-D1b mutation. RILs which had Klasic as the maternal parent were significantly harder than those which had ID377s as the maternal parent. When the maternal parent and puroindoline allele were analyzed in combination, RILs derived from Klasic as the maternal parent and the Pina-D1b allele were significantly harder (P 0.001) than those containing the same allele but ID377s as the maternal parent. The same occurred for RILs containing the Pinb-D1b allele, lines with Klasic as the maternal parent were harder than lines with ID377s as the maternal parent. These results corroborate the harder phenotype of the Pina-D1b allele and indicate a significant maternally-inherited contribution to kernel texture variation.  相似文献   
47.
Self-incompatibility (SI) in Brassica has been considered as a pollination control mechanism for commercial hybrid seed production, and so far has been extensively used in vegetable types of Brassicas. Oilseed rape Brassica napus (AACC) is naturally self-compatible in contrast to its parental species that are generally self-incompatible. Introduction of S-alleles from its parental species into oilseed rape is therefore needed to use this pollination control mechanism in commercial hybrid seed production. Self-incompatible lines of B. napus , carrying SI alleles in both A and C genomes, were resynthesized from self-incompatible B. oleracea var. italica (CC) cv.'Green Duke' and self-incompatible B. rapa ssp. oleifera (AA) cv. 'Horizon', 'Colt' and 'AC Parkland'. All resynthesized B. napus lines exhibited strong dominant SI phenotype. Reciprocal cross-compatibility was found between some of these self-incompatible lines. The inheritance of S-alleles in these resynthesized B. napus was digenic confirming that each of the parental genomes contributed one S-locus in the resynthesized B. napus lines. However, the presence of two S-loci in the two genomes was found not to be essential for imparting a strong SI phenotype. Possible use of these dominant self-incompatible resynthesized B. napus lines in hybrid breeding is discussed.  相似文献   
48.
In order to start a genetic improvement program for quality in the Mate crop (Ilex paraguariensis), it was attempted to estimate the actual genetic parameters of caffeine, theobromine and related quality traits, using available progeny tests in Misiones, Argentina. Using cluster analysis, eight groups of similar characteristics could be identified, and individual within full-sib family selection for quality was performed. Additive effects were strong for caffeine but weak for theobromine. Co-heritability between caffeine and theobromine was positive, suggesting that additive genetic correlations and dominance correlations are concurring. The strong influence of paternal progenitors regarding caffeine needs more research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
49.
A study of the inheritance of sorghum resistance to head-bug Eurystylusoldi and midge Stenodiplosis sorghicola has been conducted from anF1-based complete diallel involving four parental lines (namely head-bugresistant Malisor 84-7 & 87W810, and susceptible S 34 & ICSV 197).The trial was conducted at Samanko, Mali, under both natural and artificialhead-bug infestation, in one date of sowing (DOS) in 1995 and two DOSin 1996. Head-bug visual damage scores (under both types of infestation)were indicated and analyzed in all these trials. Head-bug numbers underartificial infestation on the two DOS of 1996, and midge damage scoreunder natural infestation on the second DOS of 1996 were recorded. Allfour parents confirmed their expected level of resistance to head-bugs,while ICSV 197 confirmed its resistance to midge. Diallel analyses showedthat general combining ability (GCA) and thus additive gene effects werevery important in the inheritance of resistance to both pests. Specificcombining ability and maternal effects were generally of minor importance.Mean performance of the parents and their GCA effects were linked, whichsuggests high heritability. Head-bug resistant parents, Malisor 84-7 &87W810, with high per se resistance and negative GCA shouldtherefore be used in breeding for resistance to this pest, while for a similarreason, ICSV 197 should be used in breeding for midge resistance. Resultsconcerning independance between resistance to head-bugs and to midge,are also discussed.  相似文献   
50.
R. Ecker  Z. Yaniv 《Euphytica》1993,69(1-2):45-49
Summary Inheritance of fatty acid composition was studied in an F1 diallel cross in Sinapis alba. Crosses were made among accessions having contrasting amounts of oleic (C18:1) and erucic (C22:1) acid. Concentrations of oleic, linoleic (C18:2), eicosenoic (C20:1) and erucic (C22:1) acids were determined by gas-chromatography for each mating combination. Genetic analysis confirmed that the composition of the fatty acids was controlled mainly by the nuclear genes of the embryo. Additive gene action with partial dominance for the reducing alleles was noted for oleic and linoleic acids, while erucic acid showed an additive mode of inheritance with partial dominance for the enhancing alleles. Positive heterosis was demonstrated for eicosenoic acid content. Erucic acid content was strongly negatively correlated with oleic acid, suggesting a genetic interdependence between the two fatty acids. Broad-sense and narrow-sense heritability estimates for each of oleic, linoleic and erucic acids were very high, due to low between-plants non-genetic component of variance.Contribution No. 3662-E, 1992 series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号