首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   15篇
  国内免费   2篇
综合类   2篇
畜牧兽医   102篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   8篇
  2019年   1篇
  2018年   7篇
  2017年   17篇
  2016年   10篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有104条查询结果,搜索用时 531 毫秒
31.
32.
ObjectiveTo evaluate the effect of dexmedetomidine on alfaxalone immobilization in snakes.Study designNonblinded, crossover study.AnimalsA total of eight mature common garter snakes (Thamnophis sirtalis).MethodsSnakes were administered each of three treatments intracoelomically: alfaxalone (30 mg kg–1; treatment A), alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.05 mg kg–1; treatment AD0.05); and alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.10 mg kg–1; treatment AD0.10). A minimum of 10 days elapsed between experimental trials. Times to loss of righting reflex (LRR) and return of righting reflex (RRR) were recorded. Heart rate (HR) was recorded every 5 minutes throughout the period of LRR and averaged for each snake. Times to LRR and RRR, and mean HR in snakes that achieved LRR were reported.ResultsLRR occurred in eight (100%), five (63%) and three (38%) snakes in treatments A, AD0.05 and AD0.10, respectively. For all treatments, time to LRR ranged 3–20 minutes. Median (range) times to RRR were 39 (30–46), 89 (62–128) and 77 (30–185) minutes for treatments A, AD0.05 and AD0.10, respectively. In animals where righting reflex was lost, mean HR was lower in all dexmedetomidine treatments compared with treatment A.Conclusions and clinical relevanceIn this pilot study, alfaxalone resulted in reliable immobilization, whereas dexmedetomidine and alfaxalone combinations resulted in highly variable durations of immobilization with low HR in immobilized animals. For snakes that achieved LRR, the addition of dexmedetomidine (0.05 mg kg–1) to alfaxalone appeared to extend the period of immobilization compared with alfaxalone alone.  相似文献   
33.
34.
ObjectiveTo evaluate the antiemetic effect of butorphanol (BUT) when co-administered with dexmedetomidine (DEX) in cats.Study designDouble-blind, randomized controlled cross-over experimental study.AnimalsFourteen purpose-bred healthy Domestic Short Hair cats, seven females and seven males, aged median (range) 14–84 (78) months and weighing 1.7–5.5 (4.0) kg.MethodsEach cat received five different treatment protocols intramuscularly (IM): (A) 25 μg kg−1 DEX; (B) 20 μg kg−1 DEX and 0.2 mg kg−1 BUT; (C) 20 μg kg−1 DEX and 0.1 mg kg−1 BUT; (D) 25 μg kg−1 DEX and 0.2 mg kg−1 BUT; and (E) 20 μg kg−1 DEX. Episodes of emesis, incidence and severity of nausea, and time to lateral recumbency were recorded for a period of 8 minutes after treatment administration, and the sedation was scored at the end of this period. The Friedman test and the Cochran’s Q-test were used to analyse the data. Significance was evaluated at the 5% level.ResultsThe proportion of cats that vomited was significantly lower with the treatment protocols that included BUT (B, C and D) compared with the protocols that included only DEX (A and E). The proportion of cats that had nausea was significantly higher with the protocols that included only DEX (A and E) compared with protocols B and D. Time to lateral recumbency (p = 0.09) and sedation score (p = 0.07) was not statistically different between the treatment protocols.Conclusions and clinical relevanceButorphanol can be used to prevent emesis and reduce the incidence and the severity of nausea caused by DEX in cats. It seems that the combination of BUT and DEX is very useful not only when emesis could result in serious complications, but also to provide comfort and well-being in cats sedated for minor procedures.  相似文献   
35.
Alpha(2)-adrenoreceptor agonists (alpha(2)-agonists) are commonly used in small animal anaesthesia for their potent sedative and analgesic properties, although concerns about their cardiovascular effects have prevented their full adoption into veterinary practice. Research into alpha(2) adrenoreceptor agonists and their clinical use is extensive, therefore this review focuses on the use of dexmedetomidine and medetomidine in dogs. Emphasis is given to the cardiovascular effects and antinociceptive action of these agents.  相似文献   
36.
Reasons for performing study: Dexmedetomidine has been administered in the equine as a constant‐rate infusion (CRI) during inhalation anaesthesia, preserving optimal cardiopulmonary function with calm and coordinated recoveries. Inhalant anaesthetic sparing effects have been demonstrated in other species, but not in horses. Objectives: To determine the effects of a CRI of dexmedetomidine on the minimal alveolar concentration (MAC) of sevoflurane in ponies. Methods: Six healthy adult ponies were involved in this prospective, randomised, crossover, blinded, experimental study. Each pony was anaesthetised twice (3 weeks washout period). After induction with sevoflurane in oxygen (via nasotracheal tube), the ponies were positioned on a surgical table (T0), and anaesthesia was maintained with sevoflurane (expired sevoflurane fraction 2.5%) in 55% oxygen. The ponies were randomly allocated to treatment D (dexmedetomidine 3.5 µg/kg bwt i.v. [T10–T15] followed by a CRI of dexmedetomidine at 1.75 µg/kg bwt/h) or treatment S (bolus and CRI of saline at the same volume and rate as treatment D). After T60, MAC determination, using a classic bracketing technique, was initiated. Stimuli consisted of constant‐current electrical stimuli at the skin of the lateral pastern region. Triplicate MAC estimations were obtained and averaged in each pony. Monitoring included pulse oximetry, electrocardiography, anaesthetic gas monitoring, arterial blood pressure measurement and arterial blood gases. Normocapnia was maintained by mechanical ventilation. Analysis of variance (treatment and period as fixed factors) was used to detect differences between treatments (α= 0.05). Results: An intravenous (i.v.) dexmedetomidine CRI decreased mean ± s.d. sevoflurane MAC from 2.42 ± 0.55 to 1.07 ± 0.21% (mean MAC reduction 53 ± 15%). Conclusions and potential relevance: A dexmedetomidine CRI at the reported dose significantly reduces the MAC of sevoflurane.  相似文献   
37.
HistoryA 10–year old Arabian mare had a slow–growing mass on the lower right mandible and required a large partial mandibulectomy.Physical examinationNo abnormalities were detected apart from the mass.ManagementA temporary tracheostomy was performed pre–operatively. Anesthesia was induced with xylazine followed by ketamine and diazepam. For 13 hours, anesthesia was maintained using sevoflurane, dexmedetomidine and remifentanil infusions, with the exception of surgical preparation time. Intra–operatively, ventilation was delivered through the cuffed tracheotomy tube. Heart and respiratory rates, ECG, arterial pressures, inspired and expired gases, pulse oximetry values and body temperature were monitored. Dobutamine and whole blood were necessary, and romifidine was used to control recovery. Post–operatively, phenylbutazone and buprenorphine given systemically and bupivacaine administered through a wound soaker catheter were used to provide analgesia. Head–shaking from buprenorphine was controlled with acepromazine and detomidine once standing after 87 minutes in recovery. For 3 days after surgery, analgesia was provided with butorphanol, phenylbutazone and bupivacaine. The mare recovered well, appeared comfortable and started eating the following day with no signs of ileus.Follow–upSeven months later, the mare was doing well.ConclusionsSevoflurane, dexmedetomidine and remifentanil infusions were suitable for a long and invasive procedure.  相似文献   
38.
OBJECTIVE: To measure the change in the minimum alveolar concentration of isoflurane associated with three constant rate infusions of dexmedetomidine. STUDY DESIGN: Prospective, randomized, and blinded experimental trial. Animals Six healthy 6-year-old Beagles weighing between 13.0 and 17.7 kg. METHODS: The dogs received each of four treatments; saline or dexmedetomidine at 0.1, 0.5 or 3 microg kg(-1) loading dose given intravenously (IV) over 6 minutes followed by infusions at 0.1, 0.5 or 3 microg kg(-1) hour(-1), respectively. There were 2 weeks between treatments. The dogs were mask-induced with and maintained on isoflurane in oxygen. Acetated Ringer's (5 mL kg(-1) hour(-1)) and saline or dexmedetomidine (each at 0.5 mL kg(-1) hour(-1)) were given IV. Pulse rate, blood pressure, samples for the measurement of blood gases, pH, lactate, packed cell volume (PCV), total protein (TP) and dexmedetomidine concentrations were obtained from an arterial catheter. Sixty minutes after induction minimum alveolar concentration (MAC) was determined by intermittently applying supramaximal electrical stimuli to the thoracic and pelvic limbs. Cardiopulmonary measurements and arterial blood samples were collected before each set of stimuli. Statistical analyses were conducted with analysis of variance or mixed models according to the experimental design. RESULTS: There was a significant decrease in the MAC of isoflurane associated with 0.5 and 3 microg kg(-1) hour(-1) but not with 0.1 mg kg(-1)hour(-1). Serum concentrations of dexmedetomidine were not measurable at the 0.1 mg kg(-1) hour(-1) and averaged 0.198 +/- 0.081 and 1.903 +/-0.621 ng mL(-1) for the 0.5 and 3 microg kg(-1) hour(-1) infusion rates, respectively. Heart rate decreased with increasing doses of dexmedetomidine while blood pressure increased. Packed cell volume increased at 3 microg kg(-1) hour(-1) but not with other doses. CONCLUSIONS AND CLINICAL RELEVANCE: Dexmedetomidine infusions decrease the intra-operative requirement for isoflurane and may be useful in managing dogs undergoing surgery, where the provision of analgesia and limitation of the stress response is desirable.  相似文献   
39.

Objective

To determine the effects of two dexmedetomidine continuous rate infusions on the minimum infusion rate of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent haemodynamic and recovery effects in Greyhounds undergoing laparoscopic ovariohysterectomy.

Study design

Prospective, randomized and blinded clinical study.

Animals

Twenty-four female Greyhounds.

Methods

Dogs were premedicated with dexmedetomidine 3 μg kg?1 and methadone 0.3 mg kg?1 intramuscularly. Anaesthesia was induced with IV alfaxalone to effect and maintained with a TIVA mixture of alfaxalone in combination with two different doses of dexmedetomidine (0.5 μg kg?1 hour?1 or 1 μg kg?1 hour?1; groups DEX0.5 and DEX1, respectively). The alfaxalone starting dose rate was 0.07 mg kg?1 minute?1 and was adjusted (± 0.02 mg kg?1 minute?1) every 5 minutes to maintain a suitable depth of anaesthesia. A rescue alfaxalone bolus (0.5 mg kg?1 IV) was administered if dogs moved or swallowed. The number of rescue boluses was recorded. Heart rate, arterial blood pressure and arterial blood gas were monitored. Qualities of sedation, induction and recovery were scored. Differences between groups were tested for statistical significance using a Student’s t test or Mann–Whitney U test as appropriate.

Results

There were no differences between groups in sedation, induction and recovery quality, the median (range) induction dose of alfaxalone [DEX0.5: 2.2 (1.9–2.5) mg kg?1; DEX1: 1.8 (1.2–2.9) mg kg?1], total dose of alfaxalone rescue boluses [DEX0.5: 21.0 (12.5–38.8) mg; DEX1: 22.5 (15.5–30.6) mg] or rate of alfaxalone (DEX0.5: 0.12 ± 0.04 mg kg?1 minute?1; DEX1: 0.12 ± 0.03 mg kg?1 minute?1).

Conclusions and clinical relevance

Co-administration of dexmedetomidine 1 μg kg?1 hour?1 failed to reduce the dose rate of alfaxalone compared with dexmedetomidine 0.5 μg kg?1 hour?1 in Greyhounds undergoing laparoscopic ovariohysterectomy. The authors recommend an alfaxalone starting dose rate of 0.1 mg kg?1 minute?1. Recovery quality was good in the majority of dogs.  相似文献   
40.

Objective

To compare incidence and duration of postinduction apnoea in dogs after premedication with methadone and acepromazine (MA) or methadone and dexmedetomidine (MD) followed by induction with propofol (P) or alfaxalone (A).

Study design

Prospective, randomized clinical trial.

Animals

A total of 32 American Society of Anesthesiologists class I dogs (15 females, 17 males), aged between 4 months and 4 years, weighing between 3 and 46 kg.

Methods

Dogs were randomly allocated to be administered MA+P, MA+A, MD+P or MD+A (methadone 0.5 mg kg?1 and acepromazine 0.05 mg kg?1 or dexmedetomidine 5 μg kg?1). Induction agents were administered intravenously via syringe driver (P at 4 mg kg?1 minute?1 or A at 2 mg kg?1 minute?1) until successful endotracheal intubation and the endotracheal tube connected to a circle system with oxygen flow at 2 L minute?1. Oxygen saturation of haemoglobin (SpO2), end tidal partial pressure of carbon dioxide and respiratory rate were monitored continuously. If apnoea (≥ 30 seconds without breathing) occurred, the duration until first spontaneous breath was measured. If SpO2 decreased below 90% the experiment was stopped and manual ventilation initiated. Data were analysed with general linear models with significance set at p ≤ 0.05.

Results

There was no statistical difference in the incidence (11 of 16 dogs in A groups and 12 of 16 dogs in P groups), or mean ± standard deviation duration (A groups 125 ± 113 seconds, P groups 119 ± 109 seconds) of apnoea. The SpO2 of one dog in the MD+P group decreased below 90% during the apnoeic period.

Conclusions and clinical relevance

Propofol and alfaxalone both cause postinduction apnoea and the incidence and duration of apnoea is not influenced by the use of acepromazine or dexmedetomidine in premedication. Monitoring of respiration is recommended when using these premedication and induction agent combinations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号