首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6572篇
  免费   2770篇
  国内免费   41篇
林业   156篇
农学   529篇
基础科学   41篇
  1482篇
综合类   194篇
农作物   155篇
水产渔业   2061篇
畜牧兽医   2939篇
植物保护   1826篇
  2024年   5篇
  2023年   1篇
  2022年   6篇
  2021年   124篇
  2020年   487篇
  2019年   917篇
  2018年   799篇
  2017年   858篇
  2016年   670篇
  2015年   632篇
  2014年   579篇
  2013年   843篇
  2012年   960篇
  2011年   565篇
  2010年   507篇
  2009年   227篇
  2008年   251篇
  2007年   114篇
  2006年   102篇
  2005年   114篇
  2004年   104篇
  2003年   111篇
  2002年   110篇
  2001年   107篇
  2000年   112篇
  1999年   25篇
  1998年   15篇
  1997年   18篇
  1996年   4篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   4篇
  1985年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有9383条查询结果,搜索用时 7 毫秒
61.
62.
63.
64.
65.
Systemicity of agrochemicals is an advantageous property for controlling phloem sucking insects, as well as pathogens and pests not accessible to contact products. After the penetration of the cuticle, the plasma membrane constitutes the main barrier to the entry of an agrochemical into the sap flow. The current strategy for developing systemic agrochemicals is to optimize the physicochemical properties of the molecules so that they can cross the plasma membrane by simple diffusion or ion trapping mechanisms. The main problem with current systemic compounds is that they move everywhere within the plant, and this non‐controlled mobility results in the contamination of the plant parts consumed by vertebrates and pollinators. To achieve the site‐targeted distribution of agrochemicals, a carrier‐mediated propesticide strategy is proposed in this review. After conjugating a non‐systemic agrochemical with a nutrient (α‐amino acids or sugars), the resulting conjugate may be actively transported across the plasma membrane by nutrient‐specific carriers. By applying this strategy, non‐systemic active ingredients are expected to be delivered into the target organs of young plants, thus avoiding or minimizing subsequent undesirable redistribution. The development of this innovative strategy presents many challenges, but opens up a wide range of exciting possibilities. © 2018 Society of Chemical Industry  相似文献   
66.
67.
68.
Since the discovery of penicillin in 1928 and throughout the ‘age of antibiotics’ from the 1940s until the 1980s, the detection of novel antibiotics was restricted by lack of knowledge about the distribution and ecology of antibiotic producers in nature. The discovery that a phenazine compound produced by Pseudomonas bacteria could suppress soilborne plant pathogens, and its recovery from rhizosphere soil in 1990, provided the first incontrovertible evidence that natural metabolites could control plant pathogens in the environment and opened a new era in biological control by root‐associated rhizobacteria. More recently, the advent of genomics, the availability of highly sensitive bioanalytical instrumentation, and the discovery of protective endophytes have accelerated progress toward overcoming many of the impediments that until now have limited the exploitation of beneficial plant‐associated microbes to enhance agricultural sustainability. Here, we present key developments that have established the importance of these microbes in the control of pathogens, discuss concepts resulting from the exploration of classical model systems, and highlight advances emerging from ongoing investigations. © 2019 Society of Chemical Industry  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号