首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   7篇
  国内免费   1篇
林业   3篇
农学   5篇
  175篇
综合类   12篇
农作物   11篇
畜牧兽医   2篇
园艺   2篇
植物保护   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   8篇
  2018年   12篇
  2017年   15篇
  2016年   15篇
  2015年   11篇
  2014年   4篇
  2013年   46篇
  2012年   63篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有213条查询结果,搜索用时 750 毫秒
11.
Oil cultivars of Brassica napus L. were grown to compare the effects of composted municipal waste (CMW) and sheep manure (SM) to field soil (C0). To each soil group, one of three levels of urea nitrogen fertilizer (N) was added. SM grown plants had higher N than those grown in CMW with the Sarigol cultivar having a higher N content than the RGS cultivar. Field soil plants grown in control soil had lowest N levels. Organic amendments increased N content of both cultivars. SM grown plants produced more siliques, a higher seed yield, and greater 100 seed weight compared to those grown in CMW. Control soil plants had the lowest number of siliques, seed yield, and 100 seed weight. CMW-treated plants contained slightly more metals than SM plants. Field soil plants had the lowest metal levels. CMW and SM application had potential to improve the growth and chemical composition without adding urea.  相似文献   
12.
In recent years, organic agriculture has been receiving greater attention because of the various problems like deterioration in soil health and environmental quality under conventional chemical‐intensive agriculture. However, little information is available on the comparative study related to the impact of use of mineral fertilizers and organic manures on the soil quality and productivity. A long‐term field experiment was initiated in 2001 to monitor some of the important soil‐quality parameters and productivity under soybean–wheat crop rotation. The treatments consisted of 0, 30, and 45 kg N ha–1 for soybean and of 0, 120, and 180 kg N ha–1 for wheat. The entire amount of N was supplied to both the crops through urea and farmyard manure (FYM) alone or in combination at 1:1 ratio. Results indicated that Walkley‐and‐Black C (WBC; chromic acid–oxidizable) exhibited a marginal increase under only organic treatments as compared to control treatment (without fertilizers and manure) after completion of five cropping cycles. In case of labile‐C (KMnO4‐oxidizable) content in soil, relatively larger positive changes were recorded under organic, mixed inputs (integrated) and mineral fertilizers as compared to WBC. Maximum improvement in the values of C‐management index (CMI), a measure of soil quality was recorded under organic (348–362), followed by mixed inputs (268–322) and mineral fertilizers (198–199) as compared to the control treatment after completion of five cropping cycles. Similarly there was a substantial increase in KCl‐extractable N; in Olsen‐P; as well as in DTPA‐extractable Zn, Fe, and Mn under organic treatments. Although labile soil C positively contributed to the available N, P, K, Zn, Fe, and Mn contents in soil, it did not show any relationship with the grain yield of wheat. After completion of the sixth cropping cycle, organic treatments produced 23% and 39% lower grain yield of wheat as compared to that under urea‐treated plots. Relatively higher amount of mineral N in soil at critical growth stages and elevated N content in plant under mineral‐fertilizer treatments compared to FYM treatments were responsible for higher yield of wheat under mineral fertilizers.  相似文献   
13.
Slurry injection below the maize (Zea mays L.) row may substitute a mineral nitrogen (N) phosphorus (P) starter fertilizer (MSF) and thus reduce nutrient surpluses in regions with intensive livestock husbandry. We investigated the plant P, zinc (Zn), and manganese (Mn) status compared to the current farm practice. In 2014 and 2015 field trials were conducted to evaluate plant nutrient status at different growth stages. Besides an unfertilized control, two slurry injection treatments (±nitrification inhibitor (NI)) were compared to slurry broadcast application plus MSF. In both experiments NI addition significantly increased nutrient concentrations during early growth (6-leaf 2015: +33% P, +25% Zn, +39% Mn). Under P deficiency due to cold weather conditions broadcast application showed higher P uptake until 6-leaf (36–58%), while it was lower at 8- (32%) and 10-leaf (19%) stage compared to slurry injection (+NI). Zn availability was enhanced for slurry injection (+NI) during early growth and Zn and Mn uptakes were higher at harvest. Slurry injection decreased P balances by 10–14 kg P ha?1, while Zn and Mn balances were excessive independent of treatments. Slurry injection (+NI) can substitute a MSF without affecting early growth and enhances the Zn and Mn status. This new fertilizing strategy enables farmers to reduce P surpluses.  相似文献   
14.
Barley (Hordeum vulgare L.) is a cereal grown for animal feed, human consumption, and malting. Nutrient concentrations are important as they provide information regarding the dietary values of barley consumed by animals or human beings. In addition, grain nutrient removal may be useful for refining fertilizer recommendations. A study was conducted in 2015 and 2016 investigating the cultivar effects on grain yield, quality, and grain nutrient concentrations and removal under irrigated conditions for two-row barley cultivars. Adjunct and feed cultivars produced the highest yields compared with the all-malt and food cultivars. Specific quality and nutrient values were greater than or equal to in the food cultivar compared to the malt or feed cultivars. Variations in nutrient concentrations were measured among the adjunct and all-malt cultivars, which could potentially affect the malting and brewing qualities. Grain yield, quality, nutrient concentrations and nutrient removal varied among cultivars grown under identical environmental conditions, which may influence end-use.  相似文献   
15.
We evaluated the effects of macronutrient and micronutrient omission, and of liming, on Jatropha curcas (JC) in greenhouse study. The experimental design was a factorial combination of 2 liming treatments (nil or 4.5 t. ha?1 of dolomitic lime) x 7 combinations of fertility status, with five replications. The concentrations and uptake of nutrients by JC plants follow the order: nitrogen > potassium > calcium ≥ Magnesium > sulfur > phosphorus > iron > boron > manganese > zinc > copper (N > K > Ca ≥ Mg > S > P > Fe > B > Mn > Zn > Cu), but the growth of JC plants was negatively affected mainly by omission of macronutrients, in the following order: P > N = K = S, on limed soil. Phosphorus is the most critical element for development. JC is responsive to micronutrients only when applied together with macronutrients. Potassium chloride is not recommended as K+ source for JC crop. Lime is recommended to improve growth and nutritional status of JC plants.  相似文献   
16.
Ammonium and nitrate are the major forms of nitrogen (N) present in tropical soils. An experiment was conducted to assess the influence of nitrate and ammonium forms (NO3?, NH4+, and mix of NO3? + NH4+), and levels (1.5–12.0 mM) of N on the growth and nutrition of cacao (Theobroma cacao L). Growth parameters were significantly influenced by N forms, and nitrogen supplied as NH4+ proved better for the growth of cacao compared with NO3? form and mixtures of these two forms. Irrespective of the forms of N, levels of N had no significant effect on plant growth parameters. Nutrient efficiency ratios (NERs) (shoot dry matter produced per unit of nutrient uptake) for macronutrients were sulfur>phosphorus>calcium>magnesium>nitrogen>potassium (S>P>Ca>Mg>N>K) and for micronutrients NERs were in the order of copper>boron>zinc>iron>manganese (Cu>B>Zn>Fe>Mn).  相似文献   
17.
Foliar fertilization may be a viable strategy to boron supply in irrigated cropping systems with common beans (Phaseolus vulgaris), since it prevent B leaching. The aim of this work was to evaluate the economic viability and physiological parameters of the common beans production in irrigated cropping systems using sources and increasing foliar boron doses. A field experiment was carried out using an experimental block design in a factorial scheme 2?×?5?×?3, with two sources of B (boric acid and borax) and five doses: 0 (control), 2, 4, 6 e 8?kg?ha?1, with three repetitions. Foliar B applications were performed at 40 days after seeds germination, in pre-flowering stage. Physiological process (transpiration, stomatal conductance, CO2 internal concentration, net photosynthesis, and relative chlorophyll index), B level in leaves and grain yield were measured. These data were used to determine the economic viability of B fertilization in common beans. Both boric acid and borax increased B levels in common beans leaves. Borax affected some physiological process reducing stomatal conductance and increasing net photosynthesis. Using borax, the highest net photosynthesis was observed at a rate of 4?kg?ha?1, while the boric acid increased net photosynthesis linearly after increasing B doses application. An enhance of 311?kg?ha?1 in the grain yield was observed using borax related to the control (without B application); however, grain yield decreased linearly after application of increasing B doses, as boric acid. Comparing the economic viability of sources and doses of B, the highest profitability is obtained using borax at a rate of 4?kg?ha?1, which promoting a differential profit of US$534.44 per hectare compared to common beans cropping without B.  相似文献   
18.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   
19.
The present study was conducted to investigate in sunflower the processes of boron (B) uptake, intracellular compartmentation, and xylem translocation in response to B supply, ranging from deficiency to incipient toxicity, and to short-term changes in B supply. The experiments were conducted with two sunflower genotypes, selected on the basis of their susceptibility to knife-cut disease. It appears that the roots of the susceptible genotype of sunflower were more sensitive to low B contents in the solution media than the shoots. The decrease in root dry weight in high-B treatments could also indicate it was more sensitive to B toxicity. Though root dry weight decreased, the shoot/root dry-weight ratio was smaller in the resistant genotype, suggesting that this genotype would have a substantially larger root volume, capable of supporting the B demand of its shoots. The B contents in the water-insoluble residue (WIR) of roots were similar for all genotypes and treatments. In contrast, the B concentration in WIR of leaves reached values near saturation only when B started to accumulate in the cell sap (CS) of roots to the level as detected in CS of leaves. The critical values of B concentrations in shoot tissues would then be established after the B requirement for cell walls was satisfied and a proper metabolic B content in CS of roots was reached. Uptake efficiency (UE) values less than 1.00, detected as a result of treatments with high concentrations of B in the nutrient solution, suggested the presence of an exclusion mechanism that restricted B accumulation. The high UE value obtained with low-B treatments indicated that mechanisms other than mass flow had played a role in providing the acquired B.  相似文献   
20.
The mountainous region of the Himalayas is covered with forest, grassland, and arable land, but the variation in ecosystem functions has not been fully explored because of the lack of available data. This study appraises the changes in soil properties over the course of a year (spring, summer, autumn, winter) for forest, grassland, and arable soils in a typical hilly and mountainous region of Azad Jammu and Kashmir, Pakistan. Soil samples were collected from major land-cover types in the mountain region: natural forest, grassland, and cultivated land (arable). The natural forest served as a control against which changes in soil properties resulting from removal of natural vegetation and cultivation of soil were assessed. Soil samples were collected from depths of 0–15 and 15–30 cm six times during the year and examined for changes in temperature, moisture, electrical conductivity (EC), micronutrients [iron, manganese, copper, and zinc (Fe, Mn, Cu, Zn, respectively)], and microbial population. Significant differences were found in soil temperature, soil moisture, Fe, Mn, Cu, Zn, and number of bacteria, actinomycetes, and fungi among the three land-cover types. Soil under cultivation had 4–5 °C higher temperature and 3–6% lower moisture than the adjacent soils under grassland and forest. Electrical conductivity (EC) values of forest, grassland, and arable soil were 0.36, 0.30, and 0.31 dS m?1, indicating that soil collected from the forest had 18–20% more EC than the adjacent arable and grassland soils. On average, amounts of Fe, Mn, Cu, and Zn in the soil collected from the arable site were 6.6, 5.7, 1.7, and 0.8 mg kg?1, compared with 24.0, 12.1, 3.5, and 1.2 mg kg?1 soil in the forest soil, showing that arable had two to four times less micronutrients than grassland and forest. Populations of bacteria, actinomycetes, and fungi in the forest were 22.3 (105), 8.2 (105), and 2.5 (103), respectively, while arable land exhibited 8.2 (105), 3.2 (105), and 0.87 (103). Season (temperature) and depth showed significant effects on microbial activity and nutrient concentration, and both decreased significantly in winter and in the subsurface layer of 15?30 cm. Different contents of the parameters among arable, grassland, and forest soils indicated an extractive effect of cultivation and agricultural practices on soil. Natural vegetation appeared to be a main contributor to soil quality as it maintained the moisture content and increased the nutrient status and microbial growth of soil. Therefore, it is important to sustain high-altitude ecosystems and reinstate the degraded lands in the mountain region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号