首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
  国内免费   1篇
  3篇
综合类   3篇
农作物   15篇
水产渔业   20篇
畜牧兽医   1篇
植物保护   1篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
21.
The bacterial diversity of a phototrophic biofilm used as nutrient‐recycler into a shrimp aquaculture system and as direct food‐source for shrimp was studied by next‐generation sequencing, considering the 16S rDNA and metagenomics sequence classification using exact alignments. Biofilm was promoted by the modification of cabon:nitrogen ratio and by the addition of the diatom Navicula sp. as promoter. Results revealed a wide diversity of bacteria thriving into the biofilm; most of the bacteria detected in the biofilm belonged to the Proteobacteria (47%), Chlamydiae/Verrucomicrobia (11%), Bacteriodetes (8%), Planctomycetes (5%) Phylum. Species involved in the decomposition of organic matter, nitrogenous‐ and sulfurous metabolites were detected; moreover, filamentous species known as biomass‐bulking enhancers and producers of adhesin‐like compounds were also detected. Surprising results were also obtained by detecting both, strictly anaerobic and aerobic bacteria involved into the metabolism of nitrogenous compounds. Other species not belonging to the marine environment were also detected, but their role is unclear. Finally, the detection of most of these species may constitute a first case report for a phototrophic biofilm. The results suggest an important role of bacteria in this type of biofilm and a complex microbial‐interaction network.  相似文献   
22.
Epibiotic bacteria associated with the filamentous marine cyanobacterium Moorea producens were explored as a novel source of antibiotics and to establish whether they can produce cyclodepsipeptides on their own. Here, we report the isolation of micrococcin P1 (1) (C48H49N13O9S6; obs. m/z 1144.21930/572.60381) and micrococcin P2 (2) (C48H47N13O9S6; obs. m/z 1142.20446/571.60370) from a strain of Bacillus marisflavi isolated from M. producens’ filaments. Interestingly, most bacteria isolated from M. producens’ filaments were found to be human pathogens. Stalked diatoms on the filaments suggested a possible terrestrial origin of some epibionts. CuSO4·5H2O assisted differential genomic DNA isolation and phylogenetic analysis showed that a Kenyan strain of M. producens differed from L. majuscula strain CCAP 1446/4 and L. majuscula clones. Organic extracts of the epibiotic bacteria Pseudoalteromonas carrageenovora and Ochrobactrum anthropi did not produce cyclodepsipeptides. Further characterization of 24 Firmicutes strains from M. producens identified extracts of B. marisflavi as most active. Our results showed that the genetic basis for synthesizing micrococcin P1 (1), discovered in Bacillus cereus ATCC 14579, is species/strain-dependent and this reinforces the need for molecular identification of M. producens species worldwide and their epibionts. These findings indicate that M. producens-associated bacteria are an overlooked source of antimicrobial compounds.  相似文献   
23.
Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA). These organisms are dominant in the large phytoplankton fraction (>10 µm) in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides), diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA) ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell−1. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.  相似文献   
24.
Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.  相似文献   
25.
26.
Phytoplankton rely on bioactive zwitterionic and highly polar small metabolites with osmoregulatory properties to compensate changes in the salinity of the surrounding seawater. Dimethylsulfoniopropionate (DMSP) is a main representative of this class of metabolites. Salinity-dependent DMSP biosynthesis and turnover contribute significantly to the global sulfur cycle. Using advanced chromatographic and mass spectrometric techniques that enable the detection of highly polar metabolites, we identified cysteinolic acid as an additional widely distributed polar metabolite in phytoplankton. Cysteinolic acid belongs to the class of marine sulfonates, metabolites that are commonly produced by algae and consumed by bacteria. It was detected in all dinoflagellates, haptophytes, diatoms and prymnesiophytes that were surveyed. We quantified the metabolite in different phytoplankton taxa and revealed that the cellular content can reach even higher concentrations than the ubiquitous DMSP. The cysteinolic acid concentration in the cells of the diatom Thalassiosira weissflogii increases significantly when grown in a medium with elevated salinity. In contrast to the compatible solute ectoine, cysteinolic acid is also found in high concentrations in axenic algae, indicating biosynthesis by the algae and not the associated bacteria. Therefore, we add this metabolite to the family of highly polar metabolites with osmoregulatory characteristics produced by phytoplankton.  相似文献   
27.
28.
The objective of this study was to evaluate the effect of the addition of Navicula sp. on the growth and fatty acids profile of Litopenaeus vannamei postlarvae in a biofloc system (BFT). Four treatments were used: BFT; BFT 2.5N (addition of 2.5 × 104 cells/ml of Navicula sp.); BFT 5N (addition of 5 × 104 cells/ml of Navicula sp.) and BFT 10N (addition of 10 × 104 cells/ml of Navicula sp.), all in triplicate. The shrimp (1 ± 0.01 mg) were stocked at a density of 3,000 postlarvae/m3 and fed with commercial feed. The diatom was added every 10 days, and at the end of 42 days, shrimp performance, water quality and proximal composition were evaluated. The BFT 5N and BFT 10N treatments had higher performance values, highlighting the values of productivity (2.30 and 2.42 kg/m3) and specific growth rate (15.92 and 16.08%/day), which were higher than the other treatments. In addition, the highest levels of fatty acids were observed in treatments with diatom (BFT 5N and BFT 10N), indicating the benefits of Navicula sp. on growth enhancement and fatty acid content of L. vannamei postlarvae grown in biofloc systems.  相似文献   
29.
Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed.  相似文献   
30.
“One strain many compounds” (OSMAC) based approaches have been widely used in the search for bioactive compounds. Introducing stress factors like nutrient limitation, UV-light or cocultivation with competing organisms has successfully been used in prokaryote cultivation. It is known that diatom physiology is affected by changed cultivation conditions such as temperature, nutrient concentration and light conditions. Cocultivation, though, is less explored. Hence, we wanted to investigate whether grazing pressure can affect the metabolome of the marine diatom Porosira glacialis, and if the stress reaction could be detected as changes in bioactivity. P. glacialis cultures were mass cultivated in large volume bioreactor (6000 L), first as a monoculture and then as a coculture with live zooplankton. Extracts of the diatom biomass were screened in a selection of bioactivity assays: inhibition of biofilm formation, antibacterial and cell viability assay on human cells. Bioactivity was found in all bioassays performed. The viability assay towards normal lung fibroblasts revealed that P. glacialis had higher bioactivity when cocultivated with zooplankton than in monoculture. Cocultivation with diatoms had no noticeable effect on the activity against biofilm formation or bacterial growth. The metabolic profiles were analyzed showing the differences in diatom metabolomes between the two culture conditions. The experiment demonstrates that grazing stress affects the biochemistry of P. glacialis and thus represents a potential tool in the OSMAC toolkit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号