首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1264篇
  免费   61篇
  国内免费   75篇
林业   28篇
农学   66篇
基础科学   14篇
  317篇
综合类   784篇
农作物   48篇
水产渔业   43篇
畜牧兽医   51篇
园艺   38篇
植物保护   11篇
  2024年   13篇
  2023年   30篇
  2022年   39篇
  2021年   39篇
  2020年   45篇
  2019年   48篇
  2018年   46篇
  2017年   61篇
  2016年   94篇
  2015年   47篇
  2014年   54篇
  2013年   79篇
  2012年   129篇
  2011年   108篇
  2010年   125篇
  2009年   89篇
  2008年   75篇
  2007年   78篇
  2006年   66篇
  2005年   30篇
  2004年   25篇
  2003年   11篇
  2002年   11篇
  2001年   15篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   8篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1988年   3篇
  1985年   1篇
排序方式: 共有1400条查询结果,搜索用时 31 毫秒
11.
采用盆栽试验方法研究了不同陪伴阴离子条件下,土壤不同Zn含量对2个品种玉米吸收Cd、Zn的影响。不同阴离子NO-3、Cl-、SO42-以Zn(NO3)2,ZnCl2和ZnSO43种不同Zn化合物形式添加,添加Zn浓度设0、80、160和240mg·kg-14个水平,土壤Cd浓度为10mg·kg-1。结果表明,土壤中Zn添加促进了玉米生物量,其中NO-3陪伴下增加幅度最大。与对照相比,不论何种阴离子陪伴下,土壤中Zn的添加都明显降低了2个品种玉米地上部分的Cd含量(P<0.001),最小Cd含量出现在Zn80mg·kg-1或Zn160mg·kg-1处理。3种阴离子相比,NO-3比SO24-和Cl-降低幅度更为明显(P<0.001)。不同阴离子陪伴下2个品种玉米体内Cd浓度大小分别为(吉单209)SO42->Cl->NO-3,(长单374)Cl->SO24->NO-3。SO24-和Cl-处理下Cd浓度并未表现出显著差异。与地上部相反,Cl-陪伴时根系Cd浓度较低,而SO42-陪伴下Cd浓度最高。Cl-利于玉米根系对Zn的吸收及向地上部分的转移。  相似文献   
12.
以粤香占和丰美占两种水稻为指示植物,通过透射电镜、扫描电镜以及彗星实验,在根尖细胞超微结构和DNA分子水平上研究了重金属元素Cd、苄嘧磺隆(Bensulfuron Methyl,BSM)复合污染对水稻的毒理学机制。电镜分析结果表明BSM和Cd复合污染能够破坏水稻根尖的细胞结构,使表皮细胞破裂,核仁解体。对丰美占水稻进行彗星实验研究,并用CASP软件对图像进行分析。研究结果表明,随着Cd^2+浓度的增加,DNA的迁移程度逐渐增加,也就意味着DNA的受损程度逐渐增加。当Cd浓度为10mg·L^-1时,0.1mg·L^-1的BSM会使OliveTM等参数降低,这说明0.1mg·L^-1的BSM能够在一定程度上缓解Cd对水稻叶片DNA的损伤。  相似文献   
13.
郭凯  谈成林  王友保  张洁  惠勇 《安徽农业科学》2011,(17):10239-10240,10390
[目的]为花卉植物用于cd污染土壤栽培提供依据。[方法]采用水培试验研究了镧(工丑)对羽衣甘蓝受到镉(Cd)胁迫的调节效应。[结果]低浓度的cd对羽衣甘蓝的出芽率、株高、根系、地上和地下鲜重与千重等指标均有一定的抑制作用,高浓度的cd对其有明显的抑制作用,而一定浓度的La可以缓解这种抑制作用。[结论]5mg/LLa缓解高浓度cd对羽衣甘蓝种子出芽以及生长等各项指标的抑制作用效果最好。  相似文献   
14.
In this research, a hydroponics experiment was conducted to apply different concentrations of cadmium (Cd) (0, 5, 10, 25, 50, 100, 200 μmol·L-1) to maize seedlings with two leaves and one new leaf, in order to explore the effects of the different Cd concentrations on the maize seedling growth, Cd absorption kinetics and root morphology and classification. After 5 days of Cd stress, the maize seedings were sampled, the plant height, main root length, aboveground and underground biomass, root architecture, Cd content and photosynthesis and related parameters were measured. It was found that with increasing Cd stress, the plant height, main root length, biomass and tolerance index of shoots and roots, total root length, root surface area, root volume, root forks and root tips all decreased significantly; Root average diameter and root:shoot increased significantly (P<0.05). Meanwhile root parameters (root length, root surface area and root volume) of root diameter classes designated Ⅰ-Ⅲ (0-1.5 mm) showed a decreasing trend, which had a significant (P<0.05) negative correlation with root Cd concentration. The proportion of root length, root surface area and root volume with diameter between 0-0.5 mm showed a downward trend under Cd stress. Under Cd stress, Cd concentration and accumulation in underground and aboveground parts of maize seedlings increased significantly, chlorophyll content decreased, and photosynthesis was inhibited. This study has shown that Cd affected root development mainly by inhibiting the growth and morphology of fine roots, and inhibited photosynthesis, elongation and biomass accumulation of the aboveground and underground parts of the maize seedings. © 2022, Editorial Office of Acta Prataculturae Sinica. All rights reserved.  相似文献   
15.
土壤镉、锌、铅复合污染对芹菜的影响   总被引:1,自引:0,他引:1  
采用盆栽试验,研究了红壤中Cd、Zn、Pb复合污染对芹菜生长及其重金属元素含量的影响.结果表明芹菜对Cd、Zn、Pb的吸收除了受到添加该元素的影响外,还受到共存元素的影响,且受共存元素影响的大小取决于元素间的浓度组合,即在某一点共存元素对重金属元素的拮抗或协同作用最强;正交试验方差分析结果表明,土壤添加元素对芹菜干质量及其重金属元素含量的影响均不显著;重金属元素从土壤向芹菜的迁移率大小顺序是Cd>Zn>Pb,Cd最易于被植物吸收;在酸性土壤中,芹菜对Cd、Zn的吸收量随土壤Cd、Zn添加量的增大而相应增加,但迁移率呈下降趋势;单一污染与复合污染对土壤重金属元素迁移率的影响无明显差异.  相似文献   
16.
以14种大白菜为材料,研究根的相对伸长率与蔬菜地上部Cd耐性之间的关系.结果表明,种子根的相对伸长率与大白菜苗期的Cd耐性没有相关性,因而用种子根相对伸长率不能衡量大白菜对Cd的耐性.大白菜地上部Cd含量与Cd耐性指数呈负相关,表明Cd耐性强的大白菜地上部Cd的累积量相对较低.  相似文献   
17.
铁冬青幼苗对污染土壤中铅、镉的耐受、吸收和累积   总被引:1,自引:1,他引:0  
【目的】研究铁冬青Ilex rotunda在铅(Pb)、镉(Cd)污染土壤上生长的耐受性及其对Pb、Cd的吸收累积能力,为Pb、Cd污染土壤的植物修复提供理论依据。【方法】通过盆栽试验探究单一Pb污染(500、1 000和1 500 mg·kg-1)和单一Cd污染(10、25和50 mg·kg-1)对铁冬青幼苗生长、根系形态、养分及Pb或Cd吸收累积的影响。【结果】与对照(无污染土壤)相比,500 mg·kg-1的Pb处理显著增加铁冬青根生物量和根表面积,500和1 000 mg·kg-1的Pb处理均显著增加地径和质量指数;1 500 mg·kg-1的Pb处理显著降低铁冬青生物量、质量指数和全株N累积量,抑制根系生长,但显著提高根、地上部P含量和地上部K含量;Pb污染处理均显著增加铁冬青全株Pb含量以及根、全株Pb累积量,1 500 mg·kg-1的Pb处理的铁冬青各部位及全株的Pb含量和累积量最大。与对照相比,单一Cd污染对铁冬青生长、根系形态、养分累积...  相似文献   
18.
【目的】探究接种丛枝菌根(Arbuscular mycorrhizal,AM)真菌对不同程度盐分和重金属胁迫下小果白刺Nitraria sibirica Pall.生长的影响,为重金属污染盐渍化土壤的植物-微生物联合修复提供科学依据和数据支持。【方法】采用温室盆栽的方法,模拟不同程度重金属Cd污染(干土中含0、2、5 mg·kg-1 Cd)NaCl型(干土中含0、1.5 g·kg-1 Na+)盐渍化土壤(Cd0Na0、Cd0Na1.5、Cd2Na0、Cd2Na1.5、Cd5Na0、Ca5Na1.5),研究接种AM真菌Funneliformis mosseae对Cd和NaCl胁迫下小果白刺的菌根侵染、元素吸收、离子平衡、生物量、Na+Cd含量与吸收的影响。【结果】在重金属Cd和NaCl胁迫下,接种F. mosseae的植物根系平均菌根侵染率为12.68%~21.90%。与不接种CK相比,接种AM真菌使不同处理小果白刺总干质量增加101.35%~215.29%;地上部矿质营养元素增加47.55%~21...  相似文献   
19.
铁改性木本泥炭是一种新型环保有机类土壤调理剂,在稻田镉砷复合污染治理方面具有很大的应用潜力。为研究铁改性木本泥炭对稻田镉砷同步钝化效果的稳定性,在珠三角地区开展了三年的田间定位试验。结果表明:施加铁改性木本泥炭可显著降低稻米镉砷含量,下降率分别达到了41.3% ~ 57.6%和40.1%~55.8%;;可显著促进水稻增产,水稻单季撒施2 250 kg/hm~2铁改性木本泥炭,水稻增产810 ~1 125 kg/hm~2,增产率为14.3% ~18.4%;土壤的有效态镉和有效态砷含量同步降低,下降率分别为25.8% ~ 46.4%和42.6%~ 56.1%。而单施木本泥炭仅对稻米镉的吸收积累表现出较好的抑制作用,单施铁粉仅抑制了稻米砷的积累。此外,施加铁改性木本泥炭后,土壤pH提高了0.33 ~ 0.44个单位,有机质增加了2.1 ~ 3.3 g/kg,阳离子交换能力(CEC)提高了1.0~2.6 cmol/kg。这表明铁改性木本泥炭可以有效改善土壤的理化性质。对比2016—2018三年(六季)铁改性木本泥炭修复稻田镉砷复合污染效果发现,3年间早稻稻米镉砷含量下降率、产量增幅的年际差异均较小,晚稻亦然,表明铁改性木本泥炭可以稳定地抑制稻米镉砷积累、提高稻米产量。  相似文献   
20.
小麦间作伴矿景天是一种原位绿色、边生产边修复重金属污染土壤的有效方式,施用钾肥是保障小麦增产的主要措施之一。为了研究不同类型和用量的钾肥对小麦间作伴矿景天修复镉(Cd)、锌(Zn)污染土壤的强化效果,采用室外盆栽试验方法,以不施钾肥为对照处理,研究了不同类型钾肥(氯化钾、硫酸钾)及施用量(50、100 mg·kg-1和200 mg·kg-1,以K2O计)对土壤pH和Cd、Zn含量、小麦和伴矿景天幼苗生物量及其Cd、Zn积累量的影响。结果表明:相较于对照处理,施用氯化钾和硫酸钾均能降低土壤pH,且施用量增至200 mg·kg-1时土壤pH值降幅最大,分别降低了0.322和0.411。氯化钾和硫酸钾对土壤有效态Cd、Zn含量的提升效果均随施用量的提高而增强,均提高了小麦幼苗与伴矿景天生物量并促进了对Cd、Zn的积累。施用钾肥后,土壤Cd的去除率在15.1%~23.8%,土壤Zn的去除率在1.75%~4.70%。研究表明,施用钾肥均对小麦间作伴矿景天修复土壤Cd、Zn污染具有良好的强化效应,且氯化钾施用量200 mg·kg-1的修复效果优于其他处理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号