首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2745篇
  免费   126篇
  国内免费   192篇
林业   410篇
农学   96篇
基础科学   92篇
  1099篇
综合类   888篇
农作物   102篇
水产渔业   63篇
畜牧兽医   102篇
园艺   105篇
植物保护   106篇
  2024年   17篇
  2023年   53篇
  2022年   73篇
  2021年   64篇
  2020年   50篇
  2019年   76篇
  2018年   63篇
  2017年   117篇
  2016年   129篇
  2015年   141篇
  2014年   135篇
  2013年   161篇
  2012年   181篇
  2011年   319篇
  2010年   231篇
  2009年   245篇
  2008年   204篇
  2007年   223篇
  2006年   138篇
  2005年   110篇
  2004年   81篇
  2003年   59篇
  2002年   23篇
  2001年   19篇
  2000年   24篇
  1999年   17篇
  1998年   20篇
  1997年   20篇
  1996年   19篇
  1995年   10篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   10篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有3063条查询结果,搜索用时 295 毫秒
91.
Here we provide evidence that the form of carbon compound and O2 concentration exert an inter-related regulation on the production and reduction of N2O in soil. 6.7 mM d-glucose, 6.7 mM D-mannitol, 8 mM L-glutamic acid or 10 mM butyrate (all equivalent to 0.48 g C l−1) were applied to slurries of a sandy loam soil. At the start of the experiment headspace O2 concentrations were established at ∼2%, 10% and 21% O2 v/v for each C treatment, and 2 mM K15NO3 (25 atom % excess 15N) was applied, enabling quantification of 15N-N2 production, 15N-(N2O-to-N2) ratios and DNRA. The form of C compound was most important in the initially oxic (21% O2 v/v) soils, where addition of butyrate and glutamic acid resulted in greater N2O production (0.61 and 0.3 μg N2O-N g−1 soil for butyrate and glutamic acid, respectively) than the addition of carbohydrates (glucose and mannitol). Although, there was no significant effect of C compound at low initial O2 concentrations (∼2% O2 v/v), production of 15N-N2 was greatest where headspace O2 concentrations were initially, or fallen to, ∼2% O2 v/v, with greatest reduction of N2O and lowering 15N-(N2O-to-N2) ratios (∼0-0.27). This may reflect that the effect of C is indirect through stimulation of heterotrophic respiration, lowering O2 concentrations, providing sub-oxic conditions for dissimilatory nitrate reduction pathways. Addition of carbohydrates (glucose and mannitol) also resulted in greatest recovery of 15N in NH4+ from applied 15N-NO3, indicative of the occurrence of DNRA, even in the slurries with initial 10% and 21% O2 v/v concentrations. Our 15N approach has provided the first direct evidence for enhancement of N2O reduction in the presence of carbohydrates and the dual regulation of C compound and O2 concentration on N2O production and reduction, which has implications for management of N2O emissions through changing C inputs (exudates, rhizodeposition, residues) with plant species of differing C traits, or through plant breeding.  相似文献   
92.
Distinguishing between root and non-root derived CO2 efflux is important when determining rates of soil organic matter turnover, however, in practice they remain difficult to separate. Our aim was to evaluate two methods for determining the component of below-ground respiration not dependent on plant roots (i.e., basal soil respiration; Rb). The first approach estimated Rb indirectly from the y-intercept of linear regressions between below-ground respiration (BGR) and root biomass. The second approach involved direct measurements of soil respiration from bare plots. To compare the contrasting approaches, BGR and crop biomass measurements were collected throughout the year in a range of agricultural systems. We found that both methods were very closely correlated with each other. Values of Rb determined by the intercept approach, however, were slightly higher than those determined by measurement of bare plots. Both approaches showed a seasonal trend with estimates of Rb lowest in winter months at 0.02 t C ha−1 month−1 for the y-intercept approach and 0.11 t C ha−1 month−1 for the bare plots approach, even after the data had been corrected for the influence of soil temperature. Highest rates of Rb occurred from the height to the end of the crop growing season (0.8-1.5 t C ha−1 month−1). The annual CO2 efflux due to Rb was estimated to be 8.1 t C ha−1 y−1 from the y-intercept approach and 6.8 t C ha−1 y−1 from bare plots. Annual BGR was 12.1 t C ha−1 y−1. We conclude that both methods provide similar estimates of Rb, however, logistically the bare plots approach is much easier to undertake than the y-intercept approach.  相似文献   
93.
The complete carbon budget and the turnover rate of assimilated carbon of ectomycorrhizal Scots pine seedlings growing on natural humus were determined in microcosm conditions. The main aim was to improve understanding of the partitioning of the assimilated carbohydrates within seedlings associated with multiple ectomycorrhizal fungi, and to discover carbon dynamics of the mycorrhizosphere.Plant photosynthesis and below-ground respiration were measured in order to obtain the actual carbon assimilation and respiration rates at the time of measurements. Soon after the photosynthesis and respiration rate measurements the seedlings were pulse-labeled with 14CO2 to follow carbon allocation to different plant, fungal and soil compartments and rhizosphere respiration. Long-term carbon allocation during the entire life span of the seedlings was estimated by measuring plant and mycorrhizal root-tip biomass. The ectomycorrhizal community was analyzed using morphotyping and ITS-sequencing.The 14C label was detected in rhizosphere respiration after 12 h and it peaked between 36 and 60 h after labeling. More than half of the assimilated carbon was allocated below-ground as biomass or respiration and higher mycorrhizal biomass increased the below-ground carbon turnover. The presence of Suillus variegatus affected the plant carbon balance in several ways. When S. variegatus was present, the below-ground respiration increased and this carbon loss was compensated by higher photosynthetic activity. Other fungal species did not differ between each other in their effects on carbon balance. Our findings indicate that some root-associated mycorrhizal fungal symbionts can significantly alter plant CO2 exchange, biomass distribution, and the allocation of recently photosynthesized plant-derived carbon.  相似文献   
94.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   
95.
Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.  相似文献   
96.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   
97.
景秀艳 《安徽农业科学》2010,38(32):18380-18383,18387
以泰宁国家级风景名胜区为例,阐述了生态足迹分析对旅游规划和调控的指导作用。  相似文献   
98.
Thinning is an important strategy for carbon sequestration in forest management. Linear programming (LP) and goal programming (GP) can only set fixed parameters for the left hand side constraints, which are incapable of simulating different thinning intensities at thinned stands to map an appropriate thinning schedule for optimum carbon sequestration efficiently. However, multi-segment goal programming (MSGP) with the flexibility to set multi-level parameters can be applied by forest managers to quickly choose an appropriate level from different thinning intensities.The purpose of this study was to combine MSGP with LP to efficiently adopt thinned area and thinning intensity together as decision variables. In a demonstrated case, an appropriate thinning schedule for three age-classes was chosen from 768 combinations of thinning intensity in just one step. Each age-class was allocated well such as practicing medium thinning intensity on young age-class and strong thinning intensity on the old age-class. Totally 1379643.03 tons of carbon sequestration was obtained after two planning horizons, which was 34.75% higher than no thinning. Besides, a stable supply of wood form thinning is made for carbon sequestration in each period and the stocking of each age-class is also improved.  相似文献   
99.
ABSTRACT

Boreal and temperate forests cover a large part of the Earth. Forest ecosystems are a key focus for research because of their role in the carbon (C) balance and cycle. Increasing atmospheric temperatures, different disturbances (fire, storm and insects) and forest management (clear-cutting) will change considerably the C status of forest ecosystems. Using the eddy covariance (EC) method, we can define interactions among environmental factors that influence the C-balance and whether a forest ecosystem is functioning as a C-sink or C-source or possibly is C-neutral. In our review of published studies of different disturbances, we found that most of the post-disturbance studies based on EC method focused on the effects of forest fire and clear-cutting, only a few studies studies focused on the effects of storms and insects. Generally a forest is a C-source until several years after disturbance and then a forest is able to absorb C and become a C-sink. Recovery to C-sink status required up to 20 years in clear-cut areas. Recovery following wildfire disturbance was much longer, possibly more than 50 years. Recovery to C-sink status required approximately 5 years after storm and insect outbreak, however we can not predict overall recovery period because of the missing data.  相似文献   
100.
干巴菌菌丝营养生理特性的初步研究   总被引:5,自引:1,他引:4  
本文报道了不同碳源、氮源、微量元素及维生素培养基对干巴菌菌丝生长的影响。试验表明,干巴菌菌丝利用最好的的碳源是葡萄糖,其次是蔗糖。利用最好的氮源是硝酸钙,其次是硝酸铵和硫酸铵,对蛋白胨和尿素的利用效果差。缺少碳源或氮源时,菌丝生长细弱、稀少,不形成原基。微量元素和维生素均对干巴菌菌丝生长有促进作用,其中以锰、铜和维生素B2的作用尤为突出。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号