首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1169篇
  免费   36篇
  国内免费   95篇
林业   12篇
农学   242篇
基础科学   22篇
  162篇
综合类   504篇
农作物   140篇
水产渔业   1篇
畜牧兽医   121篇
园艺   9篇
植物保护   87篇
  2024年   4篇
  2023年   17篇
  2022年   33篇
  2021年   49篇
  2020年   55篇
  2019年   71篇
  2018年   28篇
  2017年   48篇
  2016年   51篇
  2015年   39篇
  2014年   49篇
  2013年   99篇
  2012年   123篇
  2011年   87篇
  2010年   68篇
  2009年   64篇
  2008年   55篇
  2007年   44篇
  2006年   53篇
  2005年   28篇
  2004年   27篇
  2003年   22篇
  2002年   24篇
  2001年   25篇
  2000年   17篇
  1999年   20篇
  1998年   7篇
  1997年   11篇
  1996年   6篇
  1995年   11篇
  1994年   8篇
  1993年   11篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有1300条查询结果,搜索用时 18 毫秒
31.
一年生禾草喷施增产菌效果试验   总被引:2,自引:1,他引:1  
对两种一年生禾草喷施增产菌的效果进行了研究。结果表明,叶面喷雾可促进燕麦的生殖生长,籽实提前成熟2 ̄5d,籽实产量比对照提高21.7%,纯增收325.50元,产投比为6.1:1.0,高粱鲜草产量比对照提高29.0%,纯增收586.50元,产投比为10.1:1.0,拌种+叶面喷雾对燕麦分蘖有促进作用,可明显提高鲜草产量,纯增收最高可达253.50元,产投比最高可达4.3:1.0。  相似文献   
32.
The waxy phenotype, associated with endosperm containing little or no amylose, has been recognized in sorghum (Sorghum bicolor L. Moench) since 1933. Although variants of the waxy gene are well characterized in other cereals, the waxy trait has been assumed to be controlled by a single allele, wx, in sorghum. Recent improvements in technologies encourage re-examination of the waxy sorghums. The objectives of this research were therefore to identify and characterize sorghum lines with differing waxy alleles and to describe the actions of those alleles in crosses. Grain of eight waxy sorghum lines (BTxARG1, BTx630, Tx2907, B.9307, 94C274, 94C278, 94C289, 94C369), three wild-type checks (BWheatland, RTx430, BN122), and F2 families from crosses among a subset of these lines were evaluated for presence or absence of granule-bound starch synthase (GBSS), the gene product of the wx locus, and wild-type vs. waxy endosperm. The F2 segregation ratios were tested for fit to a 3:1 ratio using Chi-square analyses. Two distinctly different naturally occurring waxy alleles were identified: One with no GBSS (GBSS−), and one with apparently inactive GBSS present (GBSS+). We propose that the waxy allele with no GBSS be designated wxa, and that waxy allele with apparently inactive GBSS present be designated wxb. These two alleles are located in close proximity on the waxy locus. The wxb allele is dominant to the wxa allele in terms of GBSS production, and both are recessive to the wild-type Wx in terms of amylose content. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   
33.
Sorghum midge [Stenodiplosis sorghicola (Coquillett)] is an important pest of grain sorghum, and host plant resistance is one of the important components for the management of this pest. We studied the inheritance of resistance to this insect involving a diverse array of midge-resistant and midge-susceptible genotypes in India and Kenya. Testers IS 15107, TAM 2566, and DJ 6514, which were highly resistant to sorghum midge in India, showed a greater susceptibility to this insect in Kenya. The maintainer lines ICSB 88019 and ICSB 88020 were highly resistant to sorghum midge in India, but showed a susceptible reaction in Kenya; while ICSB 42 was susceptible at both the locations. General combining ability (GCA) effects for susceptibility to sorghum midge for ICSA 88019 and ICSA 88020 were significant and negative in India, but such effects were non-significant in Kenya. The GCA effects of ICSB 42 for susceptibility to sorghum midge were significant and positive at both the locations. The GCA effects were significant and positive for Swarna, and such effects for IS 15107 and TAM 2566 were negative at both the locations. GCA effect of DJ 6514 were significant and negative in India, but non-significant and positive in Kenya; while those of AF 28 were significant and positive during the 1994 season in India, but significant and negative in Kenya. Inheritance of resistance to sorghum midge is largely governed by additive type of gene action. Testers showing resistance to sorghum midge in India and/or Kenya did not combine with ICSA 88019 and ICSA 88020 to produce midge-resistant hybrids in Kenya. Therefore, it is essential to transfer location specific resistance into both parents to produce midge-resistant hybrids.  相似文献   
34.
Genetic control of flowering time in sorghum was investigated using a recombinant inbred lines population derived from a cross between IS 2807, a slightly photoperiod sensitive tropical caudatum landrace, and IS 7680,a highly photoperiod sensitive tropical guinea landrace. Progenies were sown with their parents at six different dates between 1995 and 1997 in Burkina Faso. Direct field measures and synthetic measures derived from the implementation of a model were used to characterize the photoperiod response. Emphasis was put to identify the most relevant traits to account for Basic Vegetative Phase (BVP) and photoperiod sensitivity sensus stricto. One QTL was detected on Linkage Group (LG) F for the traits related to BVP. Two QTLs were detected on LGs C and H for the traits related to the photoperiod sensitivity sensus stricto. This gives credit to at least partially independent genetic determinisms for those two components of photoperiod response. Evidences for possible orthology of the QTLs detected here with other QTLs and major genes involved in flowering time of sorghum and rice are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
35.
A study of the inheritance of sorghum resistance to head-bug Eurystylusoldi and midge Stenodiplosis sorghicola has been conducted from anF1-based complete diallel involving four parental lines (namely head-bugresistant Malisor 84-7 & 87W810, and susceptible S 34 & ICSV 197).The trial was conducted at Samanko, Mali, under both natural and artificialhead-bug infestation, in one date of sowing (DOS) in 1995 and two DOSin 1996. Head-bug visual damage scores (under both types of infestation)were indicated and analyzed in all these trials. Head-bug numbers underartificial infestation on the two DOS of 1996, and midge damage scoreunder natural infestation on the second DOS of 1996 were recorded. Allfour parents confirmed their expected level of resistance to head-bugs,while ICSV 197 confirmed its resistance to midge. Diallel analyses showedthat general combining ability (GCA) and thus additive gene effects werevery important in the inheritance of resistance to both pests. Specificcombining ability and maternal effects were generally of minor importance.Mean performance of the parents and their GCA effects were linked, whichsuggests high heritability. Head-bug resistant parents, Malisor 84-7 &87W810, with high per se resistance and negative GCA shouldtherefore be used in breeding for resistance to this pest, while for a similarreason, ICSV 197 should be used in breeding for midge resistance. Resultsconcerning independance between resistance to head-bugs and to midge,are also discussed.  相似文献   
36.
Summary Sorghum midge, Contarinia sorghicola Coq. (Diptera: Cecidomyiidae) is one of the most important pests of grain sorghum worldwide. We studied the reaction of midge-resistant and midge-susceptible genic-cytoplasmic male-sterile (A-lines) and their maintainers (B-lines), and the effect of resistant and susceptible restorers on sorghum midge. Midge damage and adult emergence were significantly lower on the B-lines of midge-resistant genotypes (PM 7061 and PM 7068) than their corresponding A-lines, while the reverse was true for the midge-susceptible genotypes (296A and ICSA 42). Differences in midge damage and the number of midges emerged were not significant between the midge-resistant and midge-susceptible A-lines when infested without pollination (except midge emergence on PM 7061A). Pollination with a midge-resistant restorer (DJ6541) reduced midge emergence significantly in one of two seasons. Source of pollen did not influence midge emergence on the highly-resistant A-line, PM 7061A. The implications of these observations in the development of midge-resistant hybrids were discussed.  相似文献   
37.
Summary Apomixis has been reported in a few lines of sorghum, among them R473 which was originally reported to be an obligate apomict. Although this line has multiple embryo sacs, the frequency of apomictic seed formation has not been determined because a progeny test has not been possible. R473 does not cross as a female with other lines except when its own pollen is present. In the present study mutations were induced in R473 by hydrazine and irradiation. Crosses were made between male-sterile mutants as females and normal R473 as males. Plants of R473 produced F1 hybrids sexually, thus indicating that they were not obligate apomicts. These F1's also reproduced sexually, as indicated by segregation for male sterility and male fertility in F2 progenies.  相似文献   
38.
Summary Sorghum head bug (Calocoris angustatus Leth.) (Hemiptera: Miridae) is an important pest of grain sorghum in India. We studied the fecundity of head bug females reared for one to three generations on head bug-resistant and head bug-susceptible genotypes during the 1988 and 1989 rainy and 1988–89 post-rainy seasons. Head bug population increase was lower for the first, second and/or third generation when the bugs were reared on IS 2761, IS 19955, IS 14334, IS 23748, IS 16357, IS 17610, and IS 21444 compared with the susceptible controls CSH 1, CSH 5, and CSH 9. These genotypes also suffered a low grain damage (damage rating (DR) 5) (except IS 2761) compared with the susceptible controls (DR>6). A marginal decrease in fecundity was observed when the bugs were reared on IS 2761, IS 14334, IS 16357, IS 20740 and IS 17610 and then transferred to the susceptible control, CSH 1. Sorghum genotypes having lower increase in bug population across generations, suffering low grain damage, and showing adverse effects on fecundity can be used in breeding for resistance to head bugs.  相似文献   
39.
Summary The polypeptide composition of Fraction-1-Protein (F1P) from rice × sorghum, rice × wheat hybrids and their respective parents have been analyzed by a microelectrofocusing method. The large sub-unit (LSU) is composed of three polypeptides and the small sub-unit (SSU) of two polypeptides in rice and sorghum parents and rice × sorghum hybrids. Similarly, LSU is composed of three polypeptides in the rice and wheat parents and rice × wheat hybrids. Two polypeptides occur in the SSU of rice parent and rice × wheat hybrids where as only one polypeptide in the wheat parent. These polypeptides also differ in their isoelectric points. Based on the previous reports of F1P inheritance in hybrids in other crops, F1P analysis of rice × sorghum and rice × wheat hybrids does not seem to be an important marker to identify such intergeneric hybrids. Since this is first such report of F1P inheritance in hybrids between distantly related plants, its implication in different modes of inheritance are discussed.Abbreviations F1P Fraction-1-Protein - IEF Isoelectric focusing - pI Isoelectric points - LSU Large sub-unit - RuBPCase Ribulose 1,5-Bisphosphate Carboxylase-oxygenase - SSU Small sub-unit  相似文献   
40.
Host plant resistance is an effective means of controlling sorghum midge (Stenodiplosis sorghicola). We studied the influence of environmental factors on expression of resistance to sorghum midge in three midge-resistant and two midge-susceptible genotypes. Midge-resistant lines AF 28, ICSV 197, and TAM 2566 suffered 8.8 to 17.3% damage across seven so wings compared to 25.6%damage in ICSV 112, and 69.4% damage in CSH 5. Susceptibility of the midge-resistant lines (AF 28, ICSV 197, and TAM 2566) decreased with an increase in open pan evaporation, maximum and minimum temperatures, and solar radiation; while the midge-susceptible lines (ICSV 112 and CSH 5) showed a poor interaction with these factors. Midge damage in ICSV 197 showed a negative correlation with minimum temperature and relative humidity and positive correlation with sunshine hours,while the reverse was true for CSH 5. Grain growth rate between 0 and 3 days after anthesis was lower in crops sown on 1st October, when AF 28 and ICSV 197 suffered maximum midge damage. Maximum and minimum temperatures and maximum relative humidity influenced the moisture content of the grain, grain growth rate, and sorghum midge damage. There was considerable variation in genotype × environment interaction for expression of resistance to sorghum midge,and the implications of these results have been discussed in relation to development of sorghum cultivars with resistance to this insect. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号