首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   7篇
  国内免费   4篇
林业   2篇
农学   11篇
  17篇
综合类   29篇
农作物   10篇
水产渔业   5篇
畜牧兽医   3篇
园艺   22篇
植物保护   13篇
  2022年   2篇
  2021年   2篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   11篇
  2011年   14篇
  2010年   7篇
  2009年   10篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   3篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有112条查询结果,搜索用时 437 毫秒
61.
以早衰型转 Bt基因抗虫棉 L2 2为主要试材 ,研究了其体内活性氧代谢和一些抗氧化酶活性与对照常规棉 JM1 1、抗虫棉 33B的差异。结果表明 ,抗虫棉 L 2 2在生长中期时叶片中 H2 O2 含量和膜脂过氧化产物丙二醛 ( MDA)显著增高 ,在依赖抗坏血酸 ( As A)的 H2 O2 清除酶系统中 ,抗坏血酸过氧化物酶 ( As A- POD)、脱氢抗坏血酸还原酶 ( DR)、谷胱甘肽还原酶 ( GR)等酶活性极显著低于常规棉 JM1 1和 33B,叶片中 As A含量也以 L2 2为最低 ,而 DAs A/As A是最高的 ,分别是JM1 1和 33B的 3.75倍和 4.31倍。初步认为 L2 2出现早衰现象与其体内活性氧代谢失调和依赖As A的 H2 O2 清除酶系统活性显著降低有关 ,并分析了可能的原因  相似文献   
62.
二氯苯醚菊酯对黄瓜叶片几种氧化酶活性的影响   总被引:1,自引:0,他引:1  
研究结果表明,二氯苯醚菊酯(PER)对黄瓜几种氯化酶活性有不同程度的影响,其影响的程度与PER的浓度有关。20-40mg.L^-1的PER分别使黄瓜体内的过氧化氢酶和乙醇酸氧化酶活性升高3.35%-32.71%和4.42%-34.51%,20-20mg.L^-1的PER使过氧化物酶活性升高9.70%-29.10%;50-250mg.L^-1的PER使吲哚乙酸氧化酶活性升高13.58%-32.10%;50-300mg.L^-1的PER使抗坏血酸氧化酶活性下降,3.18%-20.69%,用200mg.L^-1的PER处理黄瓜幼苗1-6d后,体内过氧化物酶活升高10.375-43.17%。  相似文献   
63.
The present experiment shows that ascorbate-2-sulfate (AS) is not equivalent to ascorbic acid (AA) as a dietary vitamin C source for Atlantic salmon (Salmo salar). Within reasonable feed supplemental levels AS does not provide the tissues with adequate supplies of vitamin C to secure optimal physiological functions as demonstrated by biochemical and haematological analyses. AS could not be detected in the liver of fish fed either AA or AS, nor in vitamin C — deprived salmon, suggesting that AS is not the natural storage form of vitamin C in this species. There were no significant differences in antibody production against a soluble artificial antigen (NIP11-LPH) in fish fed 500 and 5000 mg AA/Kg dry diet or equivalent amounts of AS during a period of six weeks at a water temperature of 7.2°C.  相似文献   
64.
毛白杨抗坏血酸过氧化物酶基因PtAPX2的克隆表达及分析   总被引:1,自引:1,他引:0  
以毛白杨总RNA为模板反转录得到cDNA,克隆获得抗坏血酸过氧化物酶基因家族中的一个成员PtAPX2 864 bp的编码序列。该基因编码的蛋白包含287个氨基酸,理论分子质量为3178 ku,C末端包含锚定于过氧化物酶体跨膜结构域,推断其为过氧化物酶体定位蛋白。构建了PtAPX2原核表达载体,在大肠杆菌中表达获得了纯化的重组蛋白,并对其进行了酶学性质分析。PtAPX2对抗坏血酸的Km值为 (1.37±0.22) mmol/L,Vmax值为 (3.95±0.46) mmol/(L•min•mg);对H2O2的Km值为 (0.026±0.003) mmol/L,Vmax值为 (1.27±0.03) mmol/(L•min•mg);该酶在28 ℃,pH 7.0~7.4时活性最高。实时荧光定量PCR分析表明,PtAPX2在杨树老叶叶肉中表达量最高。对PtAPX2亚细胞定位、底物结合特征、酶学性质及组织特异性表达的分析加深了对木本植物抗氧化机理的认识。   相似文献   
65.
抗坏血酸过氧化物酶(ascorbate peroxidase, APX)是植物体内活性氧清除的关键酶,在植物逆境应答中发挥着重要作用。通过构建水稻OsAPX1基因的过表达植物载体,利用根癌农杆菌介导法导入水稻品种日本晴获得转基因植株。半定量RT-PCR分析表明,转基因植株中OsAPX1表达水平明显提高。田间T0代过表达转基因植株在高温条件下的秕谷率显著低于野生型。热激胁迫实验显示,转基因株系比野生型具有更强的耐热性。在过氧化氢胁迫下,转基因植株也表现出更强的抗氧化能力。该结果表明水稻OsAPX1基因在活性氧清除中发挥功能,过量表达OsAPX1能够增强水稻的高温抗性。  相似文献   
66.
In future, prolonged summer drought and heat will constitute a major risk for the cultivation of shallow‐rooting beech in Central Europe and will negatively affect the productivity of beech forests. In a pot experiment under controlled conditions, the influence of long‐term (28 d) water deprivation on nitrogen (N), carbon (C), phosphate (Pi), and ascorbate (ASC) concentrations was examined in leaves and fine roots of beech seedlings (Fagus sylvatica L.) from six provenances originating from Central Europe (Germany: Neidenstein and Illertissen, intermediate habitats), the Balkan peninsula (Croatia: Zagreb and Gospic, wet habitats), and Southeast Europe (Bulgaria: Kotel, Greece: Paikos; dry habitats). The goal of the study was to identify beech provenances well adapted to water limitation during summer drought events. Our results suggest that N might be involved in the alleviation of water scarcity, whereas Pi might become a limiting factor for forest growth during drought periods. Drought stress resulted in significant changes of ASC pools in leaves and fine roots and the ASC redox state. Under well‐watered and under drought conditions, ASC in leaves was the most important factor causing differences between the provenances examined. Finally, a link between P nutrition and the capacity of antioxidative stress defense by ascorbate could be highlighted. Based on observations from this study, beech seedlings from three origins (Paikos, Zagreb, and Neidenstein) might constitute beech provenances well adapted to water shortage in summer. This conclusion is drawn from the high potential of these provenances to alleviate oxidative stress during water shortage.  相似文献   
67.
Although the fungicidal properties of phosphite have been recognized, its potential as a fertilizer is still being debated. The information on how phosphite affects the growth and quality of plants in relation to phosphate (Pi) also remains unknown. This study was conducted to investigate the effect of phosphite in relation to Pi on growth and quality parameters of lettuce (Lactuca sativa L.). The results showed that addition of phosphite to the nutrient solution at different rates ranging from 0.05 to 2 mM significantly increased total P, water‐extractable Pi, and phosphite in both shoots and roots, but did not improve plant growth under various Pi supplies (0.05, 0.1, 0.15, and 0.3 mM as Pi levels for approximately 50%, 80%, 90%, and 100% of the maximum plant growth, respectively), indicating that phosphite was well absorbed by roots and mobile inside the plants, but did not provide any P nutrition. Also, no stimulating effect of any Pi–phosphite combination was observed. The effect of phosphite on plant growth was strongly dependent on the level of Pi supply. In general, application of phosphite up to 2 mM did not influence the growth of Pi‐sufficient plants. However, plants fertilized with Pi for about 90% of maximum growth were still vulnerable to phosphite at 2 mM. The negative effect of phosphite was found even at concentrations as low as 0.2 mM, when plants were supplied with Pi adequate for about 80% of maximum growth or less. At 0.05 mM, phosphite had marginal effects on plant growth under all the Pi levels. Although phosphite itself had little influence on the ascorbate and mineral concentrations of lettuce, its application to Pi‐deficient plants may decrease the mineral concentrations of plants brought about by the inhibitory effect of phosphite on root growth and hence nutrient uptake. Since phosphite is an effective fungicide for lettuce, care should be taken on Pi supplies prior to application of phosphite products to minimize the harmful effects.  相似文献   
68.
Ascorbate peroxidases (APX), localized in the cytosol, peroxisome, mitochondria, and chloroplasts of plant cells, catalyze the reduction of H2O2 to water by using ascorbic acid as the specific electron donor. To determine the role of peroxisomal type ascorbate peroxidase (pAPX), an antioxidant enzyme, in protection against salt-induced oxidative stress, transgenic Arabidopsis thaliana plant carrying a pAPX gene (HvAPX1) from barley (Hordeum vulgate L.) was analyzed. The transgenic line pAPX3 was found to be more tolerant to salt stress than the wild type. Irrespective of salt stress, there were no significant differences in Na^+, K^+, Ca^2+, and Mg^2+ contents and the ratio of K^+ to Na^+ between pAPX3 and the wild type. Clearly, the salt tolerance in pAPX3 was not due to the maintenance and reestablishment of cellular ion homeostasis. However, the degree of H2O2 and lipid peroxidation (measured as the levels of malondialdehyde) accumulation under salt stress was higher in the wild type than in pAPX3. The mechanism of salt tolerance in transgenic pAPX3 can thus be explained by reduction of oxidative stress injury. Under all conditions tested, activities of superoxide, glutathione reductase, and catalase were not significantly different between pAPX3 and the wild type. In contrast, the activity of APX was significantly higher in the transgenic plant than in wild type under salt stress. These results suggested that in higher plants, HvAPX1 played an important role in salt tolerance and was a candidate gene for developing salttolerant crop plants.  相似文献   
69.
70.
Chickpea is sensitive to low temperature (<10°C) during its reproductive stage. Low temperature adversely affects the development of pods and seeds. This study was undertaken to investigate the role of sucrose metabolizing enzymes in seed development and potential of antioxidative enzymes in protecting seeds and podwalls from the deleterious effects of cold stress in advanced cold tolerant chickpea breeding lines. Healthy pod set was observed in these tolerant lines in the end of December where as low temperature susceptible PBG-1 did not flower. Two lines ICCV 96029 and ICCV 96030 showed susceptible characters such as reduced flowering, blackened and shrivelled seeds and yellowish pods in comparison to other cold stress tolerant lines due to sudden dip of temperature (<1 °C) during the first week of January. These two lines were, therefore, treated as susceptible checks in comparison to other tolerant lines. A significantly higher activity and specific activity of sucrose synthase was observed in seeds of most of the cold tolerant lines in comparison with ICCV 96029 and ICCV 96030, thereby providing sugars as well as sugar nucleotides for their growth and starch synthesis during unfavourable low temperature. The developing seeds and podwalls of tolerant genotypes had higher activities of antioxidant enzymes, i.e. catalase, ascorbate peroxidase and glutahione reductase in comparison with ICCV 96029 and ICCV 96030. It appears that the higher activities of antioxidant enzymes in podwall protect the developing seeds from cold stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号