首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   21篇
  国内免费   28篇
林业   65篇
农学   5篇
基础科学   4篇
  213篇
综合类   117篇
农作物   6篇
水产渔业   2篇
畜牧兽医   132篇
园艺   5篇
植物保护   237篇
  2024年   2篇
  2023年   18篇
  2022年   26篇
  2021年   38篇
  2020年   19篇
  2019年   32篇
  2018年   15篇
  2017年   28篇
  2016年   41篇
  2015年   19篇
  2014年   29篇
  2013年   35篇
  2012年   50篇
  2011年   55篇
  2010年   33篇
  2009年   41篇
  2008年   42篇
  2007年   39篇
  2006年   25篇
  2005年   26篇
  2004年   19篇
  2003年   20篇
  2002年   11篇
  2001年   14篇
  2000年   11篇
  1999年   9篇
  1998年   7篇
  1997年   9篇
  1996年   11篇
  1995年   20篇
  1994年   10篇
  1993年   11篇
  1992年   7篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1986年   1篇
排序方式: 共有786条查询结果,搜索用时 25 毫秒
61.
Sustainable agricultural use of cultivated desert soils has become a concern in Hexi Corridor in Gansu Province of China, because loss of topsoil in dust storms has been recently intensified. We chose four desert sites to investigate the effects of cultivation (cropping) on (i) soil organic C and its size fractions and (ii) soil aggregate stability (as a measure of soil erodibility). These parameters are of vital importance for evaluating the sustainability of agricultural practices.

Total organic C as well as organic C fractions in soil (coarse organic C, 0.1–2 mm; young organic C, 0.05–0.1 mm; stable organic C, <0.05 mm) generally increased with the duration of the cultivation period from 0 (virgin soil, non-cultivated) to more than 30 years (p < 0.05). Compared to total organic C in virgin soils (2.3–3.5 g kg−1 soil), significantly greater values were found after 10 to >20 years of cultivation (6.2–7.1 g kg−1 soil). The increase in organic C in desert soils following prolonged cultivation was mainly the consequence of an increase in the coarse organic C. The increase in total organic C in soil was also dependent on clay content [total organic C = 0.96 + 0.249 clay content (%) + 0.05 cultivation year, R2 = 0.48, n = 27, p < 0.001]. This indicates that clay protected soil organic C from mineralization, and also contributed to the increase in soil organic C as time of cultivation increased.

There was a significant positive correlation between aggregate stability and total organic C across all field sites. The water stability of aggregates was low (with water-stable aggregate percentage 4% of dry-sieved aggregates of size 1–5 mm). There was no consistent pattern of increase in the soil aggregate stability with time of cultivation at different locations, suggesting that desert soils might remain prone to wind erosion even after 50 years of cultivation. Alternative management options, such as retaining harvested crop residues on soil surface and excluding or minimizing tillage, may permit sustainable agricultural use of desert soils.  相似文献   

62.
单株油蒿蒸腾耗水特征及其与环境因素的关系   总被引:1,自引:0,他引:1  
[目的]探究油蒿的蒸腾耗水规律及其对环境因子的响应,旨在为固沙植被建设提供科学依据。[方法]利用野外大型称重式蒸渗仪于2014年6—9月底对单株油蒿的蒸腾过程进行连续观测,并同步监测了土壤含水量及相关气象因子。[结果]油蒿单日蒸腾强度曲线在晴天表现为双峰曲线,而在阴雨天双峰曲线不明显;研究期间,单株油蒿蒸腾耗水量为101.66mm,日平均蒸腾强度为0.83mm/d。蒸渗仪内土壤蒸发量106.05mm,日平均土壤蒸发强度为0.87mm/d,试验期间蒸散量占降雨量的82.98%。降雨可以维持油蒿正常生长,并对土壤水分进行一定补充;油蒿蒸腾强度与空气相对湿度(p0.01)、空气温度(p0.01)、太阳净辐射(p0.01)和20cm深度土壤体积含水量(p0.05)具有很好的相关性,且相关性依次减小。[结论]油蒿蒸腾耗水日变化明显,其蒸腾速率受土壤水分状况、气象条件及自身生理特征等因素的影响。  相似文献   
63.
We studied the spatial and temporal patterns of decomposition of roots of a desert sub-shrub, a herbaceous annual, and four species of perennial grasses at several locations on nitrogen fertilized and unfertilized transects on a Chihuahuan Desert watershed for 3.5 years. There were few significant differences between the decomposition rates of roots on the NH4NO3 fertilized and unfertilized transects. Decomposition of all roots followed a two-phase pattern: early rapid mass loss followed by a long period of low mass loss. Rates of decomposition were negatively correlated with the initial lignin content of the roots (r=0.90). Mass loss rates of the roots of the herbaceous annual, Baileya multiradiata, were significantly higher than those of the grasses and the shrub, probably as a result of subterranean termites feeding on B. multiradiata root material. The only location where mass loss rates were significantly different was the dry lake bed, where mass loss rates were lower than those recorded on the upper watershed. The spatial differences in mass loss rates in the dry lake were attributable to the high clay content of the soils, which reduced water availability, and to the absence of termites. Non-polar substances in decomposing roots decreased rapidly during the first year, then decreased at a low but fairly constant rate. Water-soluble compounds decreased rapidly (50–60% of initial concentration) during the first 3–6 months. Lignin concentrations of roots of perennial grasses were higher than those of herbaceous annual plants and woody shrubs. Lignin concentrations increased in all species during decomposition. The chemical changes in decomposing roots followed the patterns described for decomposing litter in mesic environments. Received: 20 January 1997  相似文献   
64.
The peace treaty between Israel and Jordan found the Arava desert ecosystem, shared by the two countries, in a state of developmental dichotomy. On the Israeli side, vast lands have been settled and transformed into agricultural fields, while the Jordanian side has remained relatively intact and inhabited by only a few traditional and pastoral societies. This study examined the effect of different landscape units and proximity to agriculture on reptile diversity and rodent community structure on both sides of the border. It appears that in addition to the effect of proximity to agricultural fields and landscape habitat, the border between the two countries may play a role in determining diversity on the respective sides. While reptile abundance was generally higher on the Israeli side of the border, diversity was found to be significantly higher on the Jordanian side. Rodent community structure also revealed significant differences between the two sides of the border, mainly due to the more favorable conditions for psammophilic gerbils in Jordan. When comparing Western society with pastoral traditional society, it appears that development activities of the former have altered diversity and community structure of the taxa studied in the Arava. We suggest that in addition to the effects of habitats and human disturbances, such as modern agricultural practices, cultural differences between societies should be considered when conservation plans are developed for cross-border ecosystems.  相似文献   
65.
Chihuahuan Desert grasslands are important wintering grounds for grassland and shrub-adapted birds. Many species belonging to these assemblages are currently exhibiting population declines. One area recognized for its importance to biological diversity, including grassland birds, is the Janos-Nuevo Casas Grandes black-tailed prairie dog (Cynomys ludovicianus) complex in northwestern Chihuahua, Mexico, an area containing 58 colonies with 30,000 ha of prairie dogs. This is one of the largest remaining prairie dog complexes and the only intact complex in the Chihuahuan Desert. In its current condition, a large percentage of this complex is of reduced value to wildlife. Overgrazing on communal (ejido) lands has resulted in areas being comprised of annual grasses and forbs. The density of active prairie dog burrows and banner-tailed kangaroo rat (Dipodomys spectabilis) mounds as well as avian diversity and abundance were lower on ejido lands than an adjacent private ranchland with and without prairie dogs. Few avian species used overgrazed portions of the prairie dog colony. Community similarity among plot types was low due to different management practices and differences on and off colony. To retain, and in many instances restore the biological diversity of this important region it is essential to work with local ejidos on grazing management.  相似文献   
66.
对乌兰布和沙漠新月形沙丘表面风速的野外观测结果表明,沙丘迎风坡气流加速量主要和沙丘坡面形态、迎风坡前来流风速有关,迎风坡风速放大率介于1.02~1.59之间。近地面风速和输沙强度由坡脚至丘顶总体呈递增趋势,丘顶风速和输沙率最大,到背风坡因涡流作用,风速由丘顶至坡脚减小,输沙率锐减,相对于丘顶的风速率变化在0.17~0.49之间。由于输沙率与起沙风速的立方成正比,因而风速在迎风坡上向丘顶增加时,丘顶区域的输沙率(相对于坡脚)将成倍增加。  相似文献   
67.
Controls on soil respiration in semiarid soils   总被引:2,自引:0,他引:2  
Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different temperatures. Within all soil moisture regimes, respiration rates always increased with increase in temperature. For a given temperature, soil respiration increased by half (on average) across moisture regimes; Q10 values declined with soil moisture from 3.2 (at −0.03 MPa) to 2.1 (−1.5 MPa). In summary, soil respiration was generally directly related to temperature, but responses were ameliorated with decrease in soil moisture.  相似文献   
68.
The effects of harvester ant (Pogonomyrmex rugosus) nests on the density and cover of spring annual plants and on soil characteristics were measured at three locations characterized by different soils and dominant vegetation on a desert watershed. There were few differences in vegetation and soils associated with harvester ant nests at locations at the base of the watershed where brief periods of flooding and sediment deposition occur at periodic intervals. At mid-slope locations, there were significant increases in total nitrogen, inorganic phosphorus, and cover (biomass) of four species of spring annuals at the edges of nest disks when compared with reference sites. The spring annuals that exhibited increased cover were species that increase biomass as a function of available nitrogen. At a clay-loam, Scleropogon-Hilaria, grassland site, there were significant reductions in the concentrations of Ca2+ and Mg2+, significant increases in nitrate and total nitrogen, but a significant increase in cover in only one species of annual plant. The data demonstrate that the effects of ants on soil properties and vegetation vary with site location and soil type.  相似文献   
69.
The Gila Monster (Heloderma suspectum) is a large, venomous lizard protected throughout its distribution in the southwestern United States and northwestern Mexico. Rapid urban growth in key areas of its range and increased encounters with humans prompted us to investigate translocation as a conservation tool with “nuisance” Gila Monsters. Twenty-five Gila Monsters reported as nuisances by residents in the northeastern Phoenix Metropolitan Area were translocated from 0 to 25,000 m from their point of capture. Subjects (N=18) translocated less than 1000 m returned to their original site of capture within 2-30 days; none of those (N=7) translocated more than 1000 m successfully returned, they exhibited high daily rates of speed, and were deprived the use of familiar refuges. We conclude that small distance translocations within suitable habitats are ineffective in removing Gila Monsters from areas deemed unsuitable. Moreover, individuals moved significantly greater distances are unlikely to remain at a translocation site, and may experience a variety of costs (e.g., predation risk) associated with high rates of movement.  相似文献   
70.
We sampled soil at four sites in the Laguna Mountains in the western Sonoran Desert to test the effects of site and sample location (between or beneath plants) on fatty acid methyl ester (FAME) and carbon substrate ulilization (Biolog) profiles. The four sites differed in elevation, soil type, plant community composition, and plant percent cover. Soil pH decreased and plant density increased with elevation. Fertile islands, defined as areas beneath plants with greater soil resources than bare areas, are present at all sites, but are most pronounced at lower elevations. Consistent with this pattern, fertile islands had the greatest influence on FAME and Biolog profiles at lower elevations. Based on the use of FAME biomarker and principal components analyses, we found that soil microbial communities between plants at the lowest elevation had proportionally more Gram-negative bacteria than all other soils. At the higher elevation sites there were few differences in FAME profiles of soils sampled between vs. beneath plants. Differences in FAME profiles under plants among the four sites were small, suggesting that the plant influence per se is more important than plant type in controlling FAME profiles. Since microbial biomass carbon was correlated with FAME number (r=0.85,P<0.0001) and with FAME named (r=0.88,P<0.0001) and total areas (r=0.84,P<0.0001), we standardized the FAME data to ensure that differences in FAME profiles among samples were not the result of differences in microbial biomass. Differences in microbial substrate utilization profiles among sampling locations were greatest between samples taken under vs. between plants at the two lower elevation sites. Microbial substrate utilization profiles, therefore, also seem to be influenced more by the presence of plants than by specific plant type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号