首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2413篇
  免费   116篇
  国内免费   169篇
林业   433篇
农学   130篇
基础科学   51篇
  975篇
综合类   659篇
农作物   142篇
水产渔业   78篇
畜牧兽医   98篇
园艺   112篇
植物保护   20篇
  2024年   19篇
  2023年   53篇
  2022年   69篇
  2021年   43篇
  2020年   45篇
  2019年   57篇
  2018年   52篇
  2017年   85篇
  2016年   101篇
  2015年   121篇
  2014年   108篇
  2013年   143篇
  2012年   179篇
  2011年   280篇
  2010年   175篇
  2009年   210篇
  2008年   152篇
  2007年   161篇
  2006年   114篇
  2005年   93篇
  2004年   87篇
  2003年   65篇
  2002年   37篇
  2001年   33篇
  2000年   37篇
  1999年   25篇
  1998年   25篇
  1997年   25篇
  1996年   24篇
  1995年   13篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   13篇
  1990年   8篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
排序方式: 共有2698条查询结果,搜索用时 109 毫秒
51.
Using the method of a life cycle inventory (LCI) analysis, the energy balance and the carbon dioxide (CO2) emission of logging residues from Japanese conventional forestry as alternative energy resources were analyzed over the entire life cycle of the residues. The fuel consumption for forestry machines was measured in field experiments for harvesting and transporting logging residues at forestry operating sites in Japan. In addition, a total audit of energy consumption was undertaken. It involved an assessment of materials, construction, and the repair and maintenance of forestry machines as well as the costs associated with an energy-conversion plant. As a result, the ratio of energy output to input was calculated to be 5.69, indicating that the system examined in this study could be feasible as an energy production system. The CO2 emission per MWhe (e: electricity) of the biomass-fired power generation plant was calculated to be 61.8kgCO2/MWhe, while that of coal-fired power generation plants in Japan is 960kgCO2/MWhe. Therefore, the reduction in the amount of CO2 emission that would result from replacing coal with biomass for power generation by as much as 3.0 million dry-t/year of logging residues in Japan was estimated to be 1.66 million tCO2/year, corresponding to 0.142% of the national CO2 emission. This study provides evidence that Japan could reduce its domestic CO2 emission by using logging residues as alternative energy resources.  相似文献   
52.
A Review of Fine Root Dynamics in Populus Plantations   总被引:1,自引:0,他引:1  
Production of native and hybridized varieties of Populus has received considerable interest in temperate regions as an alternative to agricultural crops and an additional wood source, while acting as a potential carbon (C) sink to offset emissions of fossil fuel-based greenhouse gases. Research of root system dynamics in Populus species is expanding, however, our understanding of the nature and role of fine roots (FR) is incomplete. The study objective, therefore, was to review the literature regarding FR production, mortality and longevity in Populus, and evaluate the magnitude and significance of the FR fraction to C sequestration. FRs, conventionally defined as less than 2 mm in diameter and responsible for water and nutrient uptake, are an essential component of the tree. Populus FRs are relatively short-lived, with reported lifespans ranging from 30 to 300 days, depending on root diameter, tree species and age, and soil environmental factors. Standing FR biomass fluctuates throughout the growing season. Fine root production generally peaks in mid-summer, and ranges between 1.0 and 5.0 mg ha−1 yr−1, while FR mortality has less seasonal amplitude. Production and mortality dynamics in Populus are highly plastic in response to soil environmental conditions, and although opposing conclusions have been proposed, research suggests soil moisture and nitrogen to be most important. Results from the literature indicate annual FR turnover to the soil C pool may be small (0.2–1.6 mg C ha−1 yr−1), but substantial in maintaining or enhancing C levels in natural and managed stands of Populus.  相似文献   
53.
LIGNUM is a whole tree model, developed for Pinus sylvestris in Finland, that combines tree metabolism with a realistic spatial distribution of morphological parts. We hypothesize that its general concepts, which include the pipe model, functional balance, yearly carbon budget, and a set of architectural growth rules, are applicable to all trees. Adaptation of the model to Pinus banksiana, a widespread species of economic importance in North America, is demonstrated.

Conversion of the model to Jack pine entailed finding new values for 16 physiological and morphological parameters, and three growth functions. Calibration of the LIGNUM Jack pine model for open grown trees up to 15 years of age was achieved by matching crown appearance and structural parameters (height, foliage biomass, aboveground biomass) with those of real trees. A sensitivity study indicated that uncertainty in the photosynthesis and respiration parameters will primarily cause changes to the net annual carbon gain, which can be corrected through calibration of the growth rate. The effect of a decrease in light level on height, biomass, total tree branch length, and productivity were simulated and compared with field data. Additional studies yielded insight into branch pruning, carbon allocation patterns, crown structure, and carbon stress. We discuss the value of the LIGNUM model as a tool for understanding tree growth and survival dynamics in natural and managed forests.  相似文献   

54.
Carbon stocks in vegetation replacing forest in Brazilian Amazonia affect net emissions of greenhouse gases from land-use change. A Markov matrix of annual transition probabilities was constructed to estimate landscape composition in 1990 and to project future changes, assuming behavior of farmers and ranchers remains unchanged. The estimated 1990 landscape was 5.4% farmland, 44.8% productive pasture, 2.2% degraded pasture, 2.1% ‘young’ (1970 or later) secondary forest derived from agriculture, 28.1% ‘young’ secondary forest derived from pasture, and 17.4% ‘old’ (pre-1970) secondary forest. The landscape would eventually approach an equilibrium of 4.0% farmland, 43.8% productive pasture, 5.2% degraded pasture, 2.0% secondary forest derived from agriculture, and 44.9% secondary forest derived from pasture. An insignificant amount is regenerated ‘forest’ (defined as secondary forest over 100 years old). Average total biomass (dry matter, including below-ground and dead components) was 43.5 t ha−1 in 1990 in the 410 × 103 km2 deforested by that year for uses other than hydroelectric dams. At equilibrium, average biomass would be 28.5 t ha−1 over all deforested areas (excluding dams). These biomass values are more than double those forming the basis of deforestation emission estimates currently used by the Intergovernmental Panel on Climate Change (IPCC). Although higher replacement landscape biomass decreases net emissions from deforestation, these estimates still imply large net releases.  相似文献   
55.
This research examined the first year growth characteristics of cold stored and transplanted nursery-produced aspen (Populus tremuloides) seedlings (container and bareroot (BR)) and compared it to the growth of seedlings that had not been transplanted (established from germinants in the field) and therefore had an unrestricted root system (UR). Prior to planting, nursery-produced seedlings were placed in cold storage (−3°C) and root growth potential (RGP) and total non-structural carbohydrate (TNC) root reserves were tested at 0, 10, 75 and after 150 (container) and 190 days (BR) of storage. Both container and BR stock had much lower root to shoot ratios (RSRs) and root carbohydrate reserves compared to UR seedlings after 170 days. During storage, root reserves in container stock declined faster than in the BR and UR seedlings. RGP in all nursery stock was the highest after 75 days of storage, while longer storage resulted in shoot dieback and reduced root growth. After the first growing season, UR seedlings were one tenth the size of the nursery stock; however, in the second growing season they had no stem dieback and grew twice the height and stem diameter. The higher RSRs and root reserves in the UR seedlings was likely caused by early bud set in its first year of growth. This suggests that inducing bud set earlier in the growing regime might allow seedlings to increase root mass and carbohydrate reserves.  相似文献   
56.
The dynamics of carbon (C) and nitrogen (N), derived from the decomposition of windrowed harvest residues, was examined in the establishment phase of a second rotation (2R) hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) plantation in subtropical Queensland, Australia. Following harvesting and site preparation, when residues were formed into windrows, in situ N mineralisation was measured in positions along the three tree-planting rows formed between the windrows. The position above the windrow had a higher nitrification rate than the other positions, averaging about 18 kg N ha−1/month compared with 12 and 9 Kg N ha−1 for the positions between and below the windrow positions, respectively. This position also had consistently greater soil moisture.

Macroplots were formed extending 5 m above and 10 m below a windrow. Windrowed residues within the macroplots were replaced by 15N-labelled material comprising hoop pine foliage, branch and stem. Hoop pine trees were planted within each macroplot with foliar samples taken at 12 and 24 months. Differences in foliar 15N enrichment between positions within macroplots were <1‰. Soil samples were taken from positions along the macroplots at 6-monthly intervals. Samples revealed an initial release of labile C and N but soil δ15N showed that residue-derived N was largely immobilised within the windrows for the 30-month sampling period. Whilst the use of windrows may act as a barrier to the down-slope movement of water, the residue N within the windrows may not be available to the trees of the following rotation for a considerable period following planting. Trees closest to the windrows may be able to introduce roots under the windrows thereby gaining access to the available N, but trees in the central tree planting row are unlikely to derive any significant benefit from the decomposition of windrowed residues.  相似文献   

57.
Laminated veneer lumber joints made with metal plate connectors were protected with wood carbon phenolic spheres (CPS) sheeting and tested for creep under fire. The effects of the carbonizing temperature of charcoal, used as raw material for the CPS sheets, the thickness, and the location of the sheet on the joint regarding the fire-resistance performance of the joint were studied. The time to rupture of the joints covered with CPS sheets made from charcoal carbonized at 800°C (CPS800) was slightly prolonged compared with that of uncovered joints. On the other hand, the time to rupture of CPS sheets made from charcoal carbonized at 1600°C (CPS1600) was markedly extended. The changes in the charcoal properties due to increasing the carbonizing temperature might be the main reason the CPS1600 sheets had higher fire-resistance performance. The thickness and location of CPS1600 sheets have significant effects on the fire resistance of the joint. A highly fire-resistant laminated veneer lumber joint was obtained using a CPS1600 sheet. The CPS1600 sheet with a thickness of 3mm covering three sides of the joint prolonged the time to rupture 16-fold compared with that of unprotected joints.Part of this paper was presented at the 4th International Wood Science Symposium, Serpong, Indonesia, September 2002  相似文献   
58.
We examined the carbon stock and rate of carbon sequestration in a tropical deciduous forest dominated by Dipterocarpus tuberculatus in Manipur,North East India.Estimation of aboveground biomass was determined by harvest method and multiplied with density of tree species.The aboveground biomass was between18.27–21.922 t ha-1and the carbon stock ranged from9.13 to 10.96 t C ha-1across forest stands.Aboveground biomass and carbon stock increased with the increase in tree girth.The rate of carbon sequestration varied from1.4722 to 4.64136 t ha-1year-1among the dominant tree species in forest stands in tropical deciduous forest area.The rate of carbon sequestration depends on species composition,the density of large trees in different girth classes,and anthropogenic disturbances in the present forest ecosystem.Further work is required to identify tree species having the highest potential to sequester CO2 from the atmosphere,which could lead to recommendations for tree plantations in a degraded ecosystem.  相似文献   
59.
60.
A sterilized, but undecomposed, organic by-product of municipal waste processing was incubated in sandy soils to compare C and N mineralization with mature municipal waste compost. Waste products were added to two soils at rates of 17.9, 35.8, 71.6, and dry weight and incubated at for 90 d. Every 30 d, nitrate and ammonium concentrations were analyzed and C mineralization was measured as total CO2-C evolved and added total organic C. Carbon mineralization of the undecomposed waste decreased over time, was directly related to application rate and soil nutrient status, and was significantly higher than C mineralization of the compost, in which C evolution was relatively unaffected across time, soils, and application rates. Carbon mineralization, measured as percentage C added by the wastes, also indicated no differences between composted waste treatments. However, mineralization as a percentage of C added in the undecomposed waste treatments was inversely related to application rate in the more productive soil, and no rate differences were observed in the highly degraded soil. Total inorganic N concentrations were much higher in the compost- and un-amended soils than in undecomposed waste treatments. Significant N immobilization occurred in all undecomposed waste treatments. Because C mineralization of the undecomposed waste was dependant on soil nutrient status and led to significant immobilization of N, this material appears to be best suited for highly degraded soils low in organic matter where restoration of vegetation adapted to nutrient poor soils is desired.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号