首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   17篇
  国内免费   76篇
林业   3篇
农学   47篇
基础科学   26篇
  368篇
综合类   73篇
农作物   80篇
畜牧兽医   3篇
植物保护   2篇
  2024年   3篇
  2023年   8篇
  2022年   7篇
  2021年   10篇
  2020年   16篇
  2019年   13篇
  2018年   15篇
  2017年   16篇
  2016年   19篇
  2015年   15篇
  2014年   25篇
  2013年   26篇
  2012年   25篇
  2011年   34篇
  2010年   17篇
  2009年   31篇
  2008年   29篇
  2007年   50篇
  2006年   49篇
  2005年   28篇
  2004年   21篇
  2003年   18篇
  2002年   15篇
  2001年   14篇
  2000年   12篇
  1999年   27篇
  1998年   9篇
  1997年   16篇
  1996年   6篇
  1995年   8篇
  1994年   9篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有602条查询结果,搜索用时 31 毫秒
51.
J.A. Gmez  M.A. Nearing 《CATENA》2005,59(3):253-266
Soil surface roughness may significantly impact runoff and erosion under rainfall. A common perception is that runoff and erosion are decreased as a function of roughness because of surface ponding and increased hydraulic roughness that reduces effective flow shear stress. The objective of this study was to measure the effects of initial surface roughness on runoff and erosion under controlled laboratory conditions. Initially, rough and smooth surfaces were exposed to five simulated rainfall applications at 5% and 20% slopes. In all cases, runoff was delayed for the case of the initially rough surface; however, this effect was temporary. Overall, no statistical differences in either total runoff or erosion were measured on the 20% slope. At 5% slope, runoff was less on the rough surface for the first rainfall application but greater on the final three, probably due to the formation of a depositional seal in that case. This resulted in an overall insignificant difference in runoff for the sum of the five rainfall applications. Erosion was greater on the rougher slope at 5% steepness, probably due to concentration of flow as it moved around the roughness elements on the rougher slope. These results indicate that commonly held perceptions of the impact of soil surface roughness on runoff and erosion may not be entirely correct in all cases.  相似文献   
52.
In semiarid Mediterranean agroecosystems, low and erratic annual rainfall together with the widespread use of mouldboard ploughing (conventional tillage, CT), as the main traditional tillage practice, has led to a depletion of soil organic matter (SOM) and with increases in CO2 emissions from soil to the atmosphere. In this study, we evaluated the viability of conservation tillage: RT, reduced tillage (chisel and cultivator ploughing) and, especially, NT (no-tillage) to reduce short-term (from 0 to 48 h after a tillage operation) and mid-term (from 0 h to several days since tillage operation) tillage-induced CO2 emissions. The study was conducted in three long-term tillage experiments located at different sites of the Ebro river valley (NE Spain) across a precipitation gradient. Soils were classified as: Fluventic Xerocrept, Typic Xerofluvent and Xerollic Calciorthid. Soil temperature and water content were also measured in order to determine their influence on tillage-induced CO2 fluxes. The majority of the CO2 flux measured immediately after tillage ranged from 0.17 to 6 g CO2 m−2 h−1 and was from 3 to 15 times greater than the flux before tillage operations, except in NT where soil CO2 flux was low and steady during the whole study period. Mid-term CO2 emission showed a different trend depending on the time of the year in which tillage was implemented. Microclimatic soil conditions (soil temperature and water content) had little impact on soil CO2 emission following tillage. In the semiarid Mediterranean agroecosystems studied, NT had low short-term soil CO2 efflux compared with other soil tillage systems (e.g., conventional and reduced tillage) and therefore can be recommended to better manage C in soil.  相似文献   
53.
Soil and crop management practices may alter the quantity, quality, and placement of plant residues that influence soil C and N fractions. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)] and five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–fallow (W–F), spring wheat–lentil (Lens culinaris Medic.) (W–L), spring wheat–spring wheat–fallow (W–W–F), and spring wheat–pea (Pisum sativum L.)–fallow (W–P–F)] on transient land previously under 10 years of Conservation Reserve Program (CRP) planting on the amount of plant biomass (stems + leaves) returned to the soil from 1998 to 2003 and soil C and N fractions within the surface 20 cm in March 2004. A continued CRP planting was also included as another treatment for comparing soil C and N fractions. The C and N fractions included soil organic C (SOC), soil total N (STN), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), and NH4-N and NO3-N contents. A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) in Havre, MT, USA. Plant biomass yield varied by crop rotation and year and mean annualized biomass was 45–50% higher in CW and W–F than in W–L. The SOC and PCM were not influenced by treatments. The MBC at 0–5 cm was 26% higher in W–W–F than in W–F. The STN and NO3-N at 5–20 cm and PNM at 0–5 cm were 17–1206% higher in CT with W–L than in other treatments. Similarly, MBN at 0–5 cm was higher in CT with W–L than in other treatments, except in CT with W–F and W–P–F. Reduction in the length of fallow period increased MBC and MBN but the presence of legumes, such as lentil and pea, in the crop rotation increased soil N fractions. Six years of tillage and crop rotation had minor influence on soil C and N storage between croplands and CRP planting but large differences in active soil C and N fractions.  相似文献   
54.
A better understanding of tillage and stubble management effects on surface soil structure is vital for the development of effective soil conservation practices for the long-term. Relationships between aspects of soil structure and runoff/soil loss were investigated in 24 year old field experiment on an Oxic Paleustalf, in NSW, Australia. Two tillage/stubble management systems were compared, namely direct drilled/stubble retained (DD/SR) versus conventional tillage/stubble burnt (CC/SB). Tillage and stubble burning significantly increased bulk density and decreased the macro-aggregate stability, mean weight diameter (MWD), geometric mean diameter (GMD) and total porosity, particularly macroporosity (>60 μm). For the 0–5 cm layer, DD/SR had significantly higher water stability of macro-aggregates >2 mm than CC/SB (165 g/kg versus 78 g/kg), and the volume of pore space of diameter >60 μm at 0–5 cm depth was significantly greater (more than 11%) for DD/SR than for CC/SB. Under simulated rainfall (100 mm/h) and the removal of surface stubble, both runoff and soil loss were significantly higher under CC/SB compared to DD/SR. The infiltration rate at the end of the experiment under DD/SR was 3.7 times that of CC/SB (85 mm/h versus 23 mm/h). There were significant correlations between the proportion of soil particles >0.25 mm measured after wetting by rain and both final infiltration rate (P < 0.001) and soil loss (P < 0.001). It was concluded that 24 years of direct drilling and stubble retained practices significantly reduced runoff and soil erosion hazards, due to a fundamental change in soil structure, viz. higher soil aggregate stability and higher macroporosity of the surface soil.  相似文献   
55.
Summary Three mollisols, typical of the Palouse winter wheat region of eastern Washington and northern Idaho, were analyzed for microbial biomass, total C and total N after 10 years of combined tillage and rotation treatments. Treatments included till, no-till and three different cereal-legume rotations. All crop phases in each rotation were sampled in the same year. Microbial biomass was monitored from April to October, using a respiratory-response method. Microbial biomass, total C and total N were highest under no-till surface soils (0–5 cm), with minimal differences for tillage or depth below 5 cm. Microbial biomass differences among rotations were not large, owing to the relative homogeneity of the treatments. A rotation with two legume crops had the highest total C and N. Microbial biomass was significantly higher in no-till surface soils where the current crop had been preceded by a high-residue crop. The opposite was true for the tilled plots. There was little change in microbial biomass over the seasons until October, when fresh crop residues and rains had a strong stimulatory effect. The seasonal pattern of biomass in no-till surface soils reflected the dry summer/winter rainfall climate of the region. The results of this study show that numerous factors affect soil microbial biomass and that cropping history and seasonal changes must be taken into account when microbial biomass data are compared.Scientific paper no. 7634  相似文献   
56.
Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil) and Areni-Gleyic Luvisol (sandy soil) in Zimbabwe. At the time of sampling the soils had been under conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR) for 9 years. Soil was fully dispersed and separated into 212–2000 μm (coarse sand), 53–212 μm (fine sand), 20–53 μm (coarse silt), 5–20 μm (fine silt) and 0–5 μm (clay) size fractions. The whole soil and size fractions were analyzed for C content. Conventional tillage treatments had the least amount of SOC, with 14.9 mg C g−1 soil and 4.2 mg C g−1 soil for the red clay and sandy soils, respectively. The highest SOC content was 6.8 mg C g−1 soil in the sandy soil under MR, whereas for the red clay soil, TR had the highest SOC content of 20.4 mg C g−1 soil. Organic C in the size fractions increased with decreasing size of the fractions. In both soils, the smallest response to management was observed in the clay size fractions, confirming that this size fraction is the most stable. The coarse sand-size fraction was most responsive to management in the sandy soil where MR had 42% more organic C than CR, suggesting that SOC contents of this fraction are predominantly controlled by amounts of C input. In contrast, the fine sand fraction was the most responsive fraction in the red clay soil with a 66% greater C content in the TR than CT. This result suggests that tillage disturbance is the dominant factor reducing C stabilization in a clayey soil, probably by reducing C stabilization within microaggregates. In conclusion, developing viable conservation agriculture practices to optimize SOC contents and long-term agroecosystem sustainability should prioritize the maintenance of C inputs (e.g. residue retention) to coarse textured soils, but should focus on the reduction of SOC decomposition (e.g. through reduced tillage) in fine textured soils.  相似文献   
57.
Agricultural system models are tools to represent and understand major processes and their interactions in agricultural systems. We used the Root Zone Water Quality Model (RZWQM) with 26 years of data from a study near Nashua, IA to evaluate year to year crop yield, water, and N balances. The model was calibrated using data from one 0.4 ha plot and evaluated by comparing simulated values with data from 29 of the 36 plots at the same research site (six were excluded). The dataset contains measured tile flow that varied considerably from plot to plot so we calibrated total tile flow amount by adjusting a lateral hydraulic gradient term for subsurface lateral flow below tiles for each plot. Keeping all other soil and plant parameters constant, RZWQM correctly simulated year to year variations in tile flow (r2 = 0.74) and N loading in tile flow (r2 = 0.71). Yearly crop yield variation was simulated with less satisfaction (r2 = 0.52 for corn and r2 = 0.37 for soybean) although the average yields were reasonably simulated. Root mean square errors (RMSE) for simulated soil water storage, water table, and annual tile flow were 3.0, 22.1, and 5.6 cm, respectively. These values were close to the average RMSE for the measured data between replicates (3.0, 22.4, and 5.7 cm, respectively). RMSE values for simulated annual N loading and residual soil N were 16.8 and 47.0 kg N ha−1, respectively, which were much higher than the average RMSE for measurements among replicates (7.8 and 38.8 kg N ha−1, respectively). The high RMSE for N simulation might be caused by high simulation errors in plant N uptake. Simulated corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] yields had high RMSE (1386 and 674 kg ha−1) with coefficient of variations (CV) of 0.19 and 0.25, respectively. Further improvements were needed for better simulating plant N uptake and yield, but overall, results for annual tile flow and annual N loading in tile flow were acceptable.  相似文献   
58.
现代土壤机械耕作研究的综述   总被引:7,自引:0,他引:7  
丁启朔  丁为民 《土壤通报》2006,37(1):149-153
总结了国外的现代土壤机械耕作研究的成果,介绍围绕机械耕作为核心的土壤物理学研究进展,并指出今后土壤机械耕作研究所需解决的关键问题。  相似文献   
59.
A 2-year study was conducted to investigate the effect of three tillage systems on the properties of clay–loam soil (EutricVertisol) planted with winter wheat (Triticum aestivum L.) in the Canakkale province of north-western Turkey. Crop productivity was also evaluated. The three tillage treatments were: (1) conventional tillage involving mouldboard ploughing followed by two discings (MT); (2) shallow tillage consisting of rototilling followed by one discing (RT); (3) double discing (DD). In the first year of the study, bulk density (BD) was found significantly lower under RT at both 0–10 and 10–20 cm depths with 1.24 and 1.32 Mg cm−3, respectively, when compared to MT treatment. However, MT at 20–30 cm provided the highest BD, at 1.49 Mg cm−3. In the second year of the study, DD had the lowest BD at all depths followed by RT and MT. Based on the 2-year mean, aggregate size distribution (ASD) and mean weight diameter (MWD) were significantly influenced by tillage treatments. The greatest MWD was obtained with DD, followed by MT and RT. Increasing MWD and coarse aggregates decreased seedling emergence. Organic carbon increased after RT, DD, and MT by 58%, 30%, and 18%, respectively, when compared to the amount at the beginning of the study. Similarly, the total N in the soil and straw was higher after RT than the other treatments. At 1.76 MPa, penetration resistance at 18–30 cm was significantly higher during the growing period using DD, followed by RT with 1.35 MPa and MT with 1.33 MPa. There was no significant difference between treatments at 0–18 cm. Increasing OC and total N and decreasing BD and PR under RT increased grain yield to 4611 kg ha−1, followed by MT and DD at 4375 and 4163 kg ha−1, respectively, according to the 2-year mean.  相似文献   
60.
Agricultural implement draft requirements show considerable spatial variability due to variations in soil properties and fracturing of soil. A large sample size is necessary to obtain a representative mean draft value for a given soil type and condition because of this variability. Moreover, empirical polynomial/multi-linear regression models for implement draft are often subjected to multi-collinearity problems. Proper design of experiments can assist in the complete elimination of these multicollinearity problems. An implement test procedure has been developed which addresses the problems of soil variability and multi-collinearity. Proper choice of values for independent variables in the experimental design phase can assist in transforming these variables to an orthogonal domain which completely overcomes multi-collinearity problems. The orthogonal regression technique using transformed variables and the conventional polynomial/multi-linear regression techniques using real variables were used to analyze draft data for a moldboard plow in a Capay clay soil to illustrate advantages of the orthogonal technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号