首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   39篇
  国内免费   20篇
林业   78篇
农学   12篇
基础科学   10篇
  176篇
综合类   89篇
农作物   6篇
水产渔业   46篇
畜牧兽医   40篇
园艺   104篇
植物保护   26篇
  2024年   2篇
  2023年   6篇
  2022年   17篇
  2021年   18篇
  2020年   10篇
  2019年   16篇
  2018年   14篇
  2017年   18篇
  2016年   22篇
  2015年   12篇
  2014年   17篇
  2013年   25篇
  2012年   21篇
  2011年   34篇
  2010年   24篇
  2009年   45篇
  2008年   42篇
  2007年   42篇
  2006年   37篇
  2005年   33篇
  2004年   30篇
  2003年   24篇
  2002年   16篇
  2001年   11篇
  2000年   11篇
  1999年   10篇
  1998年   3篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
111.
Forest roads and landscape structure in the southern Rocky Mountains   总被引:18,自引:0,他引:18  
Roadless areas on public lands may serve as environmental baselines against which human-caused impacts on landscape structure can be measured. We examined landscape structure across a gradient of road densities, from no roads to heavily roaded, and across several spatial scales. Our study area was comprised of 46,000 ha on the Roosevelt National Forest in north-central Colorado. When forest stands were delineated on the basis of seral stage and covertype, no relationship was evident between average stand size and road density. Topography appeared to exert a greater influence on average stand size than did road density. There was a significant positive correlation between the fractal dimension of forest stands and road density across all scales. Early-seral stands existed in greater proportions adjacent to roads, suggesting that the effects of roads on landscape structure are somewhat localized. We also looked at changes in landscape structure when stand boundaries were delineated by roads in addition to covertype and seral stage. Overall, there was a large increase in small stands with simple shapes, concurrent with a decline in the number of stands > 100 ha. We conclude that attempts to quantify the departure from naturalness in roaded areas requires an understanding of the factors controlling the structure of unroaded landscapes, particularly where the influence of topography is great. Because roads in forested landscapes influence a variety of biotic and abiotic processes, we suggest that roads should be considered as an inherent component of landscape structure. Furthermore, plans involving both the routing of new roads and the closure of existing ones should be designed so as to optimize the structure of landscape mosaics, given a set of conservation goals.  相似文献   
112.
A growing number of studies have looked at how climate change alters the effects of habitat fragmentation and degradation on both single and multiple species; some raise concern that biodiversity loss and its effects will be exacerbated. The published literature on spatial dynamics (such as dispersal and metapopulation dynamics), habitat fragmentation and climate change requires synthesis and a conceptual framework to simplify thinking. We propose a framework that integrates how climate change affects spatial population dynamics and the effects of habitat fragmentation in terms of: (i) habitat quality, quantity and distribution; (ii) habitat connectivity; and (iii) the dynamics of habitat itself. We use the framework to categorize existing autecological studies and investigate how each is affected by anthropogenic climate change. It is clear that a changing climate produces changes in the geographic distribution of climatic conditions, and the amount and quality of habitat. The most thorough published studies show how such changes impact metapopulation persistence, source–sink dynamics, changes in species' geographic range and community composition. Climate‐related changes in movement behavior and quantity, quality and distribution of habitat have also produced empirical changes in habitat connectivity for some species. An underexplored area is how habitat dynamics that are driven by climatic processes will affect species that live in dynamic habitats. We end our discussion by suggesting ways to improve current attempts to integrate climate change, spatial population dynamics and habitat fragmentation effects, and suggest distinct areas of study that might provide opportunities for more fully integrative work  相似文献   
113.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
114.
The morphology of parcel patterns created by humans both in urban and rural areas is investigated. The parcel size distribution function, f(a), provides a criterion, that enables unambiguous classification of each piece of land as city core, suburbs, or rural area. The morphology of the rural area corresponds to a scale-free structure and follows a power-law distribution f(a) ~ a n of the parcel areas with the exponent n ≈ 1. In suburbs, the area distribution follows the log-normal distribution. In the city core, f(a) has an unimodal shape with an algebraically decaying tail, n = 2. Our study is based on data originating mainly from North America, the Hawaiian Islands, and Australia. For the regions analyzed, the characteristics of the parcel size distribution are universal and robust with respect to geographical, historical, and economical conditions accompanying development of a given area. The urbanization process can be described in terms of the changes of the morphology of the patterns of land fragmentation. In this formulation, the rural morphology, which can be thought as natural one because it exhibits a scale-free distribution of parcel sizes, is transformed into the artificial morphology developed in the city centers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
115.
Isolated trees may significantly enhance biodiversity at the landscape level. However, our understanding of their impacts is still poor, particularly in environments with high soil moisture where research on this topic has been comparatively limited. We examined understorey vegetation and soil oribatid mite assemblages under live and dead Scots pine trees and in open treeless areas, all within the same Scottish upland wet heath system, to determine whether isolated live trees affected the understorey and mite components of the ecosystem, and whether these effects occurred in parallel. We also explored whether these responses might result from tree-driven reductions in soil moisture content. Live trees reduced soil moisture (relative to wet heath and beneath dead trees) and appeared to change vegetation from wet heath to dry heath type communities. These effects were strongly related to tree trunk diameter (tree size). No major effects of dead trees on understorey vegetation or soil moisture were apparent. Higher mite species abundance and richness were found under live trees than in treeless open heath. Although mite abundances were lower under dead trees than live trees, richness remained similar, thus different factors seem to be regulating mite abundance and community composition. These findings indicate that landscape-level biodiversity responses to environmental change such as habitat fragmentation cannot be predicted from vegetation patterns alone, and that even in heavily fragmented landscapes comparatively small patches such as isolated individual trees can enhance biodiversity.  相似文献   
116.
Rodents play an important role in rangelands through the engineering of extensive burrow systems, which provides key habitats for many animal and plant species. We have analyzed the long‐term variation in the abundance and distribution of rodent burrows in grazing ecosystems of southern Russia (Kalmykia) under the landscape change from desert to steppe caused by the drastic reduction of livestock after the collapse of the USSR in the early 1990s. We conducted burrow surveys in the “desert” (1980) and “steppe” (2017) periods on 19 3‐km transects. We found considerable changes in burrow abundance and distribution, as well as evidence of desert habitat fragmentation and isolation caused by the expansion of tall‐grass communities. Burrows of the open‐dwelling diurnal ground squirrel (Spermophilus pygmaeus), the dominant and the keystone species during the “desert” period, almost completely disappeared from the rodent burrow network by 2017, indicating significant habitat loss. In contrast, the burrows of the folivorous social vole (Microtus socialis) which was rare in the 1980s, became abundant and ubiquitously distributed. The burrow density of the desert‐dwelling psammophilous midday gerbil (Meriones meridianus) decreased, while the distances between occupied patches increased, indicating desert habitat fragmentation and loss of population connectivity. Burrows of the folivorous tamarisk gerbils (M. tamariscinus) were recorded only sporadically in both 1980 and 2017. The observed changes in the rodent burrow network, the key component of grazing ecosystems, correlate with rodent species ecology and can have long‐term and important consequences for ecosystem functioning.  相似文献   
117.
A range of factors that influence aggregate stability and soil erodibility were analysed for soils sampled from land managed under contrasting agricultural methods. These included: an organic farm; a conventional farm that incorporated organic fertilizers; a conventional farm that only used inorganic fertilizers; and a non-cultivated control site. The stability of aggregates that compose the bulk soil structure (macroaggregates), and aggregates that were mobilized from the soil by simulated rainfall and surface runoff (microaggregates), were evaluated in terms of the soil fragmentation fractal dimension, organic carbon content and ATP (adenosine 5'-triphosphate; a signature of live biomass) concentration. The results were used to interpret the existing physical condition of the soils, the (microbial) processes that contribute to that physical structure, and how both pedogenic processes and existing soil quality are influenced by agricultural methods. The soils sampled for this study were demonstrated to be multi-fractal in nature: soils with greater bulk density were composed of more stable macro-aggregates, which, in turn, fragmented into larger, more stable micro-aggregates, rendering the entire soil structure less erodible. Soil erodibility and sustainable soil management should therefore be approached at multiple scales. The primary control on both macro- and micro-aggregate stability was determined to be the organic matter input to the soil, as represented by measurements of organic carbon and ATP. Organic content was greatest for the non-cultivated soil, which reflects the degradation of organic reserves in cultivated soils. For cultivated soils, it was not possible to differentiate aggregate stability for soils managed under organic or conventional (i.e. using biological and inorganic fertilizers) farming practices, but aggregates of soils that only received artificial fertilizers consistently exhibited less stability.  相似文献   
118.
Mapping Spatial Patterns with Morphological Image Processing   总被引:4,自引:3,他引:1  
We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as ‘perforated,’ ‘edge,’ ‘patch,’ and ‘core’ with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the capability to label these features at the pixel level for any scale of observation. The implementation of morphological image processing is explained and then demonstrated, with comparisons to results from image convolution, for a forest map of the Val Grande National Park in North Italy.  相似文献   
119.
Anthropogenic fragmentation of landscapes is known as a major reason for the loss of species in industrialized countries. Landscape fragmentation caused by roads, railway lines, extension of settlement areas, etc., further enhances the dispersion of pollutants and acoustic emissions and affects local climatic conditions, water balance, scenery, and land use. In this study, three new measures of fragmentation are introduced: degree of landscape division (D), splitting index (S), and effective mesh size (m). They characterize the anthropogenic penetration of landscapes from a geometric point of view and are calculated from the distribution function of the remaining patch sizes.First, D, S, and m are defined, their mathematical properties are discussed, and their reactions to the six fragmentation phases of perforation, incision, dissection, dissipation, shrinkage, and attrition are analysed. Then they are compared with five other known fragmentation indices with respect to nine suitability criteria such as intuitive interpretation, low sensivity to very small patches, monotonous reaction to different fragmentation phases, and detection of structural differences. Their ability to distinguish spatial patterns is illustrated by means of two series of model patterns. In particular, the effective mesh size (m), representing an intensive and area-proportionately additive measure, proves to be well suited for comparing the fragmentation of regions with differing total size.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号