首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   51篇
  国内免费   49篇
林业   235篇
农学   29篇
基础科学   17篇
  442篇
综合类   192篇
农作物   16篇
水产渔业   4篇
畜牧兽医   26篇
园艺   9篇
植物保护   19篇
  2024年   12篇
  2023年   34篇
  2022年   43篇
  2021年   35篇
  2020年   28篇
  2019年   29篇
  2018年   24篇
  2017年   52篇
  2016年   57篇
  2015年   40篇
  2014年   46篇
  2013年   85篇
  2012年   67篇
  2011年   91篇
  2010年   43篇
  2009年   72篇
  2008年   49篇
  2007年   46篇
  2006年   40篇
  2005年   33篇
  2004年   23篇
  2003年   15篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1998年   8篇
  1996年   3篇
  1991年   1篇
  1990年   1篇
排序方式: 共有989条查询结果,搜索用时 31 毫秒
1.
Abstract. In Australia, stubble burning and tillage are two of the major processes responsible for the decline of soil organic carbon concentration in cropped soils, and the resulting soil degradation. However, the relative importance of these two practices in influencing the soil organic carbon concentration and the long-term impact on soil quality and productivity are not clear. The effects of stubble burning as practised by farmers in southeastern Australia were evaluated in two field trials, one of 19 years duration, the other of 5 years. Conventional tillage (three tillage passes) led to greater loss of soil organic carbon than stubble burning. Loss of total soil organic carbon attributed to stubble burning in the 0–10 cm layer was estimated to be 1.75 t C ha−1 over the period of the 19-year trial, equivalent to 29% of that lost due to tillage. In the 5-year trial, no change in soil organic carbon due to stubble burning was detectable. Changes in soil quality associated with stubble burning detected in the longer trial included a reduction in macro-aggregate stability, and increases in pH and exchangeable K+. Only the latter two were detected in the shorter trial. A higher mean wheat yield (average 0.15 t ha−1) following stubble burning was observed in the 19-year trial but not in the 5-year trial. Research to monitor the longer term effects of stubble burning is needed, and to identify conditions where loss of soil organic carbon is minimized.  相似文献   
2.
采用 4 0英尺集装箱熏蒸处理纸箱 ,实验对箱中溴甲烷气体分布及散气后溴甲烷残留进行了检测研究。结果表明 ,温度高低、集装箱中纸箱堆放和电扇鼓风等情况对溴甲烷分布与扩散影响明显。集装箱装满纸箱情况下 ,当温度≥ 2 1℃ ,投药 2h后上、下检测点平均溴甲烷浓度达到最低浓度要求 ;当温度 <2 1℃时 ,投药 2 4h后上检测点平均溴甲烷浓度仍达不到最低浓度要求。当集装箱中间留有通道或使用电扇鼓风情况下 ,投药 2h后各检测点溴甲烷浓度分布达到最低浓度要求。集装箱装满纸箱情况下 ,溴甲烷向大气扩散较慢 ,即使电扇鼓风散气2h ,2 4h后溴甲烷残留量仍达不到安全指标要求。集装箱中间留有通道情况下 ,箱中溴甲烷残留量下降很快 ,并可达到安全指标要求。  相似文献   
3.
Perennial rhizomatous grasses (PRGs) tend to have a high yield combined with a low environmental impact. Cultivation in marginal or poorly cultivated land is recommended in order not to compromise food security and to overcome land use controversies. However, the environmental impacts of using different types of soil are still unclear. We thus assessed the environmental impact of two giant reed (GR) systems cultivated in a fertile soil (FS) and in a marginal soil (MS) through a cradle-to-plant gate LCA. We analyzed energy balance, GHG emissions (including LUC, not including iLUC), and the main impacts on air, water and soil quality. In both systems the annualized soil carbon sequestration was more than twofold the total GHG emitted, equal to −6464 kg CO2eq ha−1 in FS and −5757 kg CO2eq ha−1 in MS. Overall, soil characteristics affected not only GR yield level, but also its environmental impact, which seems to be higher in the MS system both on a hectare and tonne basis. The production of GR biomass in marginal soil could thus lead to higher environmental impacts and a more extensive land requirement.  相似文献   
4.
Rather than a human-centric, the basic strategy of achieving Sustainable Development Goals must be focused on restoring and sustaining planetary processes. The urgency of meeting the demands of the humanity must be reconciled with the necessity of enhancing the environment. Increasing and restoring soil organic matter content of the degraded and depleted soils is critical to strengthening planetary processes.  相似文献   
5.
The continuous use of plowing for grain production has been the principal cause of soil degradation. This project was formulated on the hypothesis that the intensification of cropping systems by increasing biomass‐C input and its biodiversity under no‐till (NT) drives soil restoration of degraded agro‐ecosystem. The present study conducted at subtropical [Ponta Grossa (PG) site] and tropical regions [Lucas do Rio Verde, MT (LRV) site] in Brazil aimed to (i) assess the impact of the continuous plow‐based conventional tillage (CT) on soil organic carbon (SOC) stock vis‐à‐vis native vegetation (NV) as baseline; (ii) compare SOC balance among CT, NT cropping systems, and NV; and (iii) evaluate the redistribution of SOC stock in soil profile in relation to soil resilience. The continuous CT decreased the SOC stock by 0·58 and 0·67 Mg C ha−1 y−1 in the 0‐ to 20‐cm depth at the PG and LRV sites, respectively, and the rate of SOC sequestration was 0·59 for the PG site and ranged from 0·48 to 1·30 Mg C ha−1 y−1 for the LRV site. The fraction of C input by crop residues converted into SOC stock was ~14·2% at the PG site and ~20·5% at the LRV site. The SOC resilience index ranged from 0·29 to 0·79, and it increased with the increase in the C input among the NT systems and the SOC sequestration rates at the LRV site. These data support the hypothesis that NT cropping systems with high C input have a large potential to reverse the process of soil degradation and SOC decline. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
During the last few decades, land use changes have largely affected the global warming process through emissions of CO2. However, C sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates. Although Mediterranean areas show a high potential for C sequestration, only a few studies have been carried out in these systems. In this study, we propose a methodology to assess the impact of land use and land cover change dynamics on soil organic C stocks at different depths. Soil C sequestration rates are provided for different land cover changes and soil types in Andalusia (southern Spain). Our research is based on the analysis of detailed soil databases containing data from 1357 soil profiles, the Soil Map of Andalusia and the Land Use and Land Cover Map of Andalusia. Land use and land cover changes between 1956 and 2007 implied soil organic C losses in all soil groups, resulting in a total loss of 16·8 Tg (approximately 0·33 Tg y−1). Afforestation increased soil organic C mostly in the topsoil, and forest contributed to sequestration of 8·62 Mg ha−1 of soil organic C (25·4 per cent). Deforestation processes implied important C losses, particularly in Cambisols, Luvisols and Vertisols. The information generated in this study will be a useful basis for designing management strategies for stabilizing the increasing atmospheric CO2 concentrations by preservation of C stocks and C sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
随着经济的快速发展,温室气体的排放量不断增加,加之人类对自然资源的利用强度逐渐增加,导致全球生态系统的固碳能力减弱,大气中的温室气体浓度达到新高,所造成的温室效应已经成为国际社会普遍关注的重大全球性问题。中国草地碳汇资源得天独厚,发展草原碳汇经济成为履行国际承诺、打造碳汇新经济、建设美丽中国的重要载体。综述中国草地固碳减排现状及其影响因素,包括草地碳汇和家畜生产减排研究、气候变化背景下的草地碳汇、人工草地建设等方面,并提出中国草地固碳减排发展建议,以期为中国实现碳达峰、碳中和及草地固碳减排的贡献提供理论基础,为推动我国社会高质量发展、创造高品质生活提供坚实的技术支撑。  相似文献   
8.
The Clean Development Mechanism (CDM) of the Kyoto Protocol of the United Nations Framework Convention on Climate Change allows a country that emits C above agreed-upon limits to purchase C offsets from an entity that uses biological means to absorb or reduce greenhouse emissions. The CDM is currently offered for afforestation and reforestation projects, but may apply subsequently to sequestration in agricultural soils. Additionally, markets outside of the Protocol are developing for soil C sequestration.  相似文献   
9.
Forest management and climate change may have a substantial impact on future soil organic carbon (SOC) stocks at the country scale. Potential SOC in Japanese forest soils was regionally estimated under nine forest managements and a climate change scenario using the CENTURY ecosystem model. Three rotations (30, 50, 100 yr) and three thinning regimes were tested: no‐thinning; 30% of the trees cut in the middle of the rotation (e.g. 15 year in a 30‐yr rotation) and thinned trees all left as litter or slash (ThinLef) and the trees from thinning removed from the forest (ThinRem). A climate change scenario was tested (ca. 3 °C increase in air temperature and 9% increase in precipitation). The model was run at 1 km resolution using climate, vegetation and soil databases. The estimated SOC stock ranged from 1600 to 1830 TgC (from 6800 to 7800 gC/m2), and the SOC stock was largest with the longest rotation and was largest under ThinLef with all three rotations. Despite an increase in net primary production, the SOC stock decreased by 5% under the climate change scenario.  相似文献   
10.
ABSTRACT

Water and rice straw (RS) management practices can potentially affect the accumulation of soil organic carbon (SOC) in agricultural soils. Field experiments were conducted in two consecutive rice-growing seasons (wet and dry) to evaluate SOC stocks under different water (continuous flooding [CF], alternate wetting and drying [AWD]) and RS management practices (RS incorporation [RS-I], RS burning [RS-B], without RS incorporation and burning [WRS]) in a double-cropped paddy field. RS-I under AWD had higher volumetric water content than the same RS management under CF at tillering in both growing seasons. Total SOC was significantly higher under AWD at tillering in both wet and dry seasons and after harvesting in the dry season compared with CF. The same trend was also observed for C:N ratio at tillering and after harvesting in the dry season. RS-B plots had lower SOC stocks than RS-I and WRS plots across most of the measuring periods regardless of the growing seasons. SOC stocks were 33.09 and 39.31 Mg/ha at RS-B and RS-I plots, respectively, in the wet season, whereas the respective values were 21.45 and 24.55 Mg/ha in the dry season. Incorporation of RS enhanced SOC stocks under AWD irrigation, especially in the dry season before planting. Soil incorporation of RS in combination with AWD could be a viable option to increase SOC stocks in the double-cropped rice production region as it is strongly linked with soil fertility and productivity. However, the environmental consequences of RS incorporation in irrigated lowland rice production system should be taken into consideration before its recommendation for paddy field on a large scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号