首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1138篇
  免费   58篇
  国内免费   93篇
林业   46篇
农学   90篇
基础科学   12篇
  282篇
综合类   426篇
农作物   62篇
水产渔业   121篇
畜牧兽医   158篇
园艺   38篇
植物保护   54篇
  2024年   9篇
  2023年   12篇
  2022年   26篇
  2021年   39篇
  2020年   31篇
  2019年   35篇
  2018年   31篇
  2017年   42篇
  2016年   56篇
  2015年   40篇
  2014年   62篇
  2013年   80篇
  2012年   98篇
  2011年   76篇
  2010年   54篇
  2009年   57篇
  2008年   70篇
  2007年   66篇
  2006年   49篇
  2005年   45篇
  2004年   48篇
  2003年   22篇
  2002年   27篇
  2001年   28篇
  2000年   31篇
  1999年   22篇
  1998年   24篇
  1997年   16篇
  1996年   9篇
  1995年   7篇
  1994年   10篇
  1993年   12篇
  1992年   6篇
  1991年   11篇
  1990年   10篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1962年   1篇
排序方式: 共有1289条查询结果,搜索用时 15 毫秒
81.
A pot experiment was catried out to study alleviation of soil acidity and Al toxicity by applying analkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acidsandy loam (pH 4.5). Barley (Hondeum vulgare L. cv. Forrester) was used as a test crop and was grownin the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that thealka1ine biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandyloam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity instrongly acid soils by increasing soil pH and lowering Al bioavailability.  相似文献   
82.
海洋氧化短杆菌15E产碱性蛋白酶的发酵条件   总被引:1,自引:2,他引:1  
对氧化短杆菌15E菌株(Brevibacterium oxydans)产碱性蛋白酶的发酵条件进行研究,结果表明,培养基初始pH值9.0、培养温度28℃、摇床转速200.rmin-1条件下培养40 h,菌体生长最适且总酶活力达到最大;菌株在添加5 g.L-1牛肉膏、1 g.L-1葡萄糖的酪蛋白培养基中生长和产酶均达到最佳;人工海水中的K+、Ca2+和Mg2+浓度较为适合15E菌株生长和产酶,其中K+对菌株产酶起关键作用.  相似文献   
83.
王雪梅 《湖北农业科学》2016,(14):3613-3617
以邛海为研究区域,对其表层水、上覆水和沉积物间隙水中不同粒级的碱性磷酸酶活性及其他理化因子进行了分析。结果表明,邛海水体及沉积物总碱性磷酸酶活性(TAPA)的分布具有明显的空间异质性,并且在垂直方向上,水体中的碱性磷酸酶在不同粒级组分中的分布均表现出显著性差异(P0.05)。邛海水体中碱性磷酸酶的活性与溶解性正磷酸盐(DIP)的含量呈显著负相关关系,说明DIP的浓度是水体中碱性磷酸酶活性的重要调控因子。  相似文献   
84.
The use of suitable plants that can accumulate excess phosphorus (P) from contaminated soil may serve as an attractive method for phytoremediation. In this study, pot experiments were conducted to investigate the effects of P incorporation on P accumulation and physiological mechanisms of Polygonum hydropiper in a mining ecotype (ME) and nonmining ecotype (NME) from a phosphorus mining and a noncontaminated agricultural area, respectively. The results demonstrate that the ME of P. hydropiper growing in soil supplied with 0, 100, 200, 400, 800, 1600 mg P (kg soil)–1 showed a significantly higher biomass compared to the NME. Phosphorus accumulation of the ME was positively correlated with the soil P concentration. APase activity in roots of the ME significantly increased at 1600 mg P (kg soil)–1 and phytase activity of the ME increased with increasing P supply. APase activity of the ME was more than twice that of the NME on average. A significant increase of superoxide dismutase (SOD) was observed compared with the NME at all supplied P levels. Peroxidase (POD) activity of the ME was significantly higher at 200 and 400 mg P (kg soil)–1. No statistical differences in the catalase (CAT) activity of the ME were observed compared with the control. Activity of CAT in the NME was obviously induced after exposure to 100–800 mg P (kg soil)–1. Malondialdehyde (MDA) concentration in leaves of the ME decreased with increasing P supply to reach a minimum at 400 mg P (kg soil)–1. In the NME, an increase in MDA concentration compared to the control was observed at higher P levels. The APase and phytase induction and antioxidative defense allowed for the high P accumulation of the ME.  相似文献   
85.
Abstract

The adsorption of nutrient elements is one of the most important solid‐ and liquid‐phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3, organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r2 values for the Langmuir isotherm were highly significant (r2=0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.  相似文献   
86.
A pot experiment was conducted to investigate the mobilization of sparingly soluble inorganic and organic sources of phosphorus (P) by red clover (Trifolium pratense L.) whose roots were colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae and in association with the phosphate-solubilizing (PS) bacterium Bacillus megaterium ACCC10010. Phosphate-solubilizing bacteria and rock phosphate had a synergistic effect on the colonization of plant roots by the AM fungus. There was a positive interaction between the PS bacterium and the AM fungus in mobilization of rock phosphate, leading to improved plant P nutrition. In dual inoculation with the AM fungus and the PS bacterium, the main contribution to plant P nutrition was made by the AM fungus. Application of P to the low P soil increased phosphatase activity in the rhizosphere. Alkaline phosphatase activity was significantly promoted by inoculation with either the PS bacterium or the AM fungus.  相似文献   
87.
Many tropical forage grasses and legumes grow well in acid soils, adapting to excess aluminum (Al) and phosphorus (P) starvation stresses by using mechanisms that are still unclear. To determine these mechanisms, responses to Al toxicity and P starvation in three tropical forages were studied: two grasses, Brachiaria hybrid cv. ‘Mulato’ (B. ruziziensis clone 44-06 × B. brizantha cv. ‘Marandú’) and Andropogon gayanus, and one legume, Arachis pintoi. The tropical grasses tolerated high levels of Al toxicity and P starvation, with the Brachiaria hybrid maintaining very low levels of Al concentration in shoots. 27Al Nuclear Magnetic Resonance spectroscopy (NMR) analysis revealed that, in the Brachiaria hybrid, Al makes complexes with some ligands such as organic-acid anions in the root symplast. The forages probably adapted to P starvation through high P-use efficiency. These experiments provide the first direct evidence we know of that organic acid anions within root tissue help detoxify Al in non-accumulator species such as the Brachiaria hybrid.  相似文献   
88.
A study was conducted to demonstrate the comparative efficiency of acid phosphatase generated by plants or fungi towards the hydrolysis of different organic P compounds present in soil. The results revealed that acid phosphatases were most efficient in the hydrolysis of glycerophosphate followed by lecithin and phytin. The P release increased with increase in enzyme concentration. Acid phosphatase generated from fungal sources showed three times greater efficiency in the hydrolysis of phytin, two times greater efficiency in hydrolysis of lecithin than plant phosphatase. Both sources were at par in hydrolyzing glycerophosphate. The results suggest that acid phosphatase generated from plant and fungal sources is different and microbial acid phosphatase to be more efficient than that from plant sources.  相似文献   
89.
A comparative study was conducted on the toxicity of Cd to alkaline phosphatase activity (ALP) and dehydrogenase activity (DHA) in 18 top soils with contrasting soil properties representative of 14 major soil types in China. Soil pH and carbonate content, soil organic matter, and cation exchange capacity (CEC) largely affected the Cd toxicity on two enzyme activities; with the soil pH having only minor effect on the median ecological dose values based on total Cd concentrations (ED50 T). The values of ED50 T/ED50 W (based on water-soluble Cd content) of alkaline phosphatase and dehydrogenase were strongly influenced by pH and CEC contents, which explained up to 71% of the variation for alkaline phosphatase, 82% of the variation for dehydrogenase, and also were significantly correlated with the parameter KF derived from Freundlich adsorption isotherms. This study suggests that the values of ED50 T/ED50 W could be useful to evaluate the buffer capacity of soils which protects soil enzymes from harmful effects of heavy metal.  相似文献   
90.
烘焙和酸洗都是可提升生物质品质的预处理方法。烘焙可以脱除生物质中的氧,酸洗则可有效脱除碱金属及碱土金属,而氧和AAEMs对热解油的品质和产率均具有影响。该文研究了酸洗-烘焙两级耦合预处理对玉米秸秆热解特性的影响。试验用酸液取自热解联产联供示范项目热解油的水相部分,烘焙温度选取230、260、290℃。研究发现,酸洗预处理能够有效脱除AAEMs,对K、Na、Mg脱除率分别达到97.53%、81.38%、84.86%。两级预处理能明显降低O/C;酸洗-290℃烘焙半焦相比玉米秸秆原样,O/C降低了25.32%。两级预处理能明显削弱烘焙对热解油产率的不利影响,酸洗-290℃烘焙半焦相比290℃烘焙半焦,其热解油产率提高127.66%;两级预处理显著提高了热解油中糖类的含量,同时降低了酚类和酸类的含量;对酸洗-290℃烘焙半焦,其热解油中糖类含量高达45.89%,酚类和酸类则低至9.76%和6.31%。其他化学组成如酮类和呋喃类的含量存在一定程度的下降,醛类含量则有小幅度的提升。该文提出的利用热解联产联供示范项目热解油的水相部分对秸秆进行酸洗,并结合烘焙的两级预处理方法可为对生物质热解提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号