Large spoil heaps formed during construction projects have caused serious soil erosion and threatened ecological security. The recent researches on soil erosion of spoil heaps are based on one or several soil types, which can only represent the soil texture category within the limited area, but cannot be used in other larger scale areas. Soil texture and gravel are the main factors affecting infiltration and erosion processes of spoil heaps.
Materials and methods
The runoff plot dimensions were 5.0 m?×?1.0 m?×?0.5 m (length × width × depth). A series of rainfall experiments with a constant rainfall intensity of 1.0 mm min?1 and a slope gradient of 25° were conducted to investigate the effects of soil texture (sandy, loam, and clay) and gravel mass content (GC, 0%, 10%, 20%, and 30%) on the infiltration and erosion processes. The gravels are divided into 3 classes according to particle size 2–14 mm (small), 14–25 mm (medium), 25–50 mm (large), and the mass ratios were 30%, 50%, and 20%. The duration of each rainfall event was 45 min after runoff out of the plot.
Results and discussion
Results showed that there was a critical GC (10%) improving or controlling infiltration and soil loss. Infiltration rate of sandy spoil heap (SSH) decreased within 45 min, but it decreased first and then stabilized for loam spoil heap (LSH) and clay spoil heap (CSH). Soil loss rate (SLR) of SSH stabilized first and then increased, while it decreased and then stabilized for LSH and CSH. SLR at early stage (0–18 min) was 0.08–0.23 times than it was at later stage (18–45 min) for SSH, but it was 2.06–5.06 times and 1.46–1.95 times for LSH and CSH, respectively. The soil texture had a more significant effect on SLR (P?< 0.05) than GC did. The effects of gravel on SLRs were dependent on soil texture.
Conclusions
The greater the GC was, the lower the SLR was for the spoil heaps. Special attention should be paid to the later stage during rainfall events for SSHs and the early stage for LSHs and CSHs when considering erosion protection measures.
Due to rapid loss of soil fertility in traditional cropping systems and subsequent yield decline, plantain fields in Southeastern Nigeria are usually reverted to fallow after three years. This study investigates the potential of mulch-based systems for long term plantain production: alley cropping with Dactyladenia barteri and natural bush, and a cut-and-carry technique with Pennisetum purpureum. Model results simulate yields decline observed under traditional cropping systems due to a decrease in soil fertility. The adoption of mulch-based technologies is conditioned by capital availability. However, when adequate capital is available, mulch-based systems are quite profitable. Under baseline conditions, the alley cropping system with natural bush outperforms the other two improved technologies with a 154% and 72% increase in net returns over continuous and shifting traditional systems, respectively. The traditional system had the worst performance without fertilizer use. A sensitivity analysis shows that the increase in net return due to fertilizer in the alley cropping and traditional systems is at least 25%. This analysis indicates that credit programs that reach small farmers and land reform that gives them secure title are essential to widespread adoption of mulch-based plantain systems. 相似文献
Physical and chemical soil properties were measured along a mountainous climatological gradient in the province of Alicante (Spain). The objective was to evaluate how the climate affects certain soil properties at different temporal and spatial scales. These properties include infiltration, runoff and sediment concentrations resulting from rainfall simulation experiments performed in winter and in summer. Chemical soil properties like carbonate content, organic matter content and CEC were analysed in reference soil profiles along the gradient. Physical soil properties like soil moisture content, macroaggregation and waterstable microaggregation were measured at monthly intervals during a year. The comparison of the results was done at different spatial (site, slope and patch) and temporal (monthly and seasonal) scales by means of some statistical tests. It can be concluded that there are some soil properties positively related to the gradient, like organic matter, clay content and CEC which increase with the annual rainfall. However, runoff coefficients and erosion are higher when the climatic annual rainfall. However, runoff coefficients and erosion are higher when the climatic conditions become more arid. Aggregation and infiltration capacity are higher on north-facing slopes and in vegetated patches than in south-facing slopes and in bare patches. 相似文献
Soil erosion and nutrient losses on newly-deforested lands in the Ziwuling Region on the Loess Plateau of China were monitored to quantitatively evaluate the effects of accelerated soil erosion, caused by deforestation, on organic matter, nitrogen and phosphorus losses. Eight natural runoff plots were established on the loessial hill slopes representing different erosion patterns of dominant erosion processes including sheet, rill and shallow gully (similar to ephemeral gully). Sediment samples were collected after each erosive rainfall event. Results showed that soil nutrients losses increased with an increase of erosion intensity. Linear relations between the losses of organic matter, total N, NH4-N, and available P and erosion intensity were found. Nutrient content per unit amount of eroded sediment decreased from the sheet to the shallow gully erosion zones, whereas total nutrient loss increased. Compared with topsoil, nutrients in eroded sediment were enriched, especially available P and NH4-N. The intensity of soil nutrient losses was also closely related to soil erosion intensity and pattern with the most severe soil erosion and nutrient loss occurring in the shallow gully channels on loessial hill slopes. These research findings will help to improve the understanding of the relation between accelerated erosion process after deforestation and soil quality degradation and to design better eco-environmental rehabilitation schemes for the Loess Plateau. 相似文献