首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
农学   1篇
  5篇
综合类   2篇
农作物   3篇
植物保护   1篇
  2023年   1篇
  2020年   1篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2001年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
《农业科学学报》2023,22(8):2509-2520
Phosphorus (P) is a finite natural resource and is increasingly considered to be a challenge for global sustainability. Agriculture in China plays a key role in global sustainable P management. Rhizosphere and soil-based P management are necessary for improving P-use efficiency and crop productivity in intensive agriculture in China. A previous study has shown that the future demand for phosphate fertilizer by China estimated by the LePA model (legacy phosphorus assessment model) can be greatly reduced by soil-based P management (the building-up and maintenance approach). The present study used the LePA model to predict the phosphate demand by China through combined rhizosphere and soil-based P management at county scale under four P fertilizer scenarios: (1) same P application rate as in 2012; (2) rate maintained same as 2012 in low-P counties or no P fertilizer applied in high-P counties until targeted soil Olsen-P (TPOlsen) level is reached, and then rate was the same as P-removed at harvest; (3) rate in each county decreased to 1–7 kg ha–1 yr–1 after TPOlsen is reached in low-P counties, then increased by 0.1–9 kg ha–1 yr–1 until equal to P-removal; (4) rate maintained same as 2012 in low-P counties until TPOlsen is reached and then equaled to P-removal, while the rate in high-P counties is decreased to 1–7 kg ha–1 yr–1 until TPOlsen is reached and then increased by 0.1–9 kg ha–1 yr–1 until equal to P-removal. Our predictions showed that the total demand for P fertilizer by whole China was 693 Mt P2O5 and according to scenario 4, P fertilizer could be reduced by 57.5% compared with farmer current practice, during the period 2013–2080. The model showed that rhizosphere P management led to a further 8.0% decrease in P fertilizer use compared with soil-based P management. The average soil Olsen-P level in China only needs to be maintained at 17 mg kg–1 to achieve high crop yields. Our results provide a firm basis for government to issue-relevant policies for sustainable P management in China.  相似文献   
2.
《Field Crops Research》2006,95(2-3):256-267
Intercropping advantages may be influenced by both plant density and relative frequency of the intercrop components. In a field study barley (Hordeum vulgare L.) and pea (Pisum sativum L.) were sole cropped and intercropped at three densities and with two relative frequencies when intercropped.Earlier seedling emergence gave barley an initial growth advantage, assessed using the relative efficiency index (REIc), whereas pea was in general more growth efficient once the initial growth phase had been passed. This reversal in relative growth efficiency along with the observation that early barley dominance did not appear to suppress pea growth indicates that differences in phenology played a role in shaping the prevailing dynamics. Whereas increases in plant density had a positive effect on the growth of pea, the growth of intercropped barley was severely limited by increases in density at the end of the growing period and more so in the pea dominated intercrop. At the final harvest land equivalent ratios (LER) of 0.9–1.2 express resource complementarity in almost all studied intercrops, complementarity that was not directly affected by changes in plant density or relative frequency.Intercropped pea did not increase its reliance on atmospheric nitrogen fixation compared to the pea sole crop. With respect to soil nitrogen uptake there were no effect of plant density but a strong effect of the relative frequency of pea in the intercrop, the greater the proportion the lower the uptake.Changes in the competitive strength of the pea and barley crop over the growing season had a marked effect on the proportion of pea in the final grain yields of the intercrops. At low and recommended density the proportions of pea and barley in the final grain yield was not markedly different from the expected proportions sown; however, at high density the suppression of barley strongly increased the proportion of pea in the final grain yield.Weed infestation levels decreased as density was raised and the suppressing effect of density was clearly stronger the greater the frequency of pea in the crop. Earlier germination and tillering ability of barley are seen as likely explanations of lower weed load in the barley dominated crop treatments.This study points at the potential of employing density and relative crop frequency as “regulators” when specific intercrop objectives such as increased competitiveness towards weeds or specific grain yield composition are wanted.  相似文献   
3.
Realizing sustainable development has become a global priority. This holds, in particular, for agriculture. Recently, the United Nations launched the Sustainable Development Goals (SDGs), and the Nineteenth National People’s Congress has delivered a national strategy for sustainable development in China—realizing green development. The overall objective of Agriculture Green Development (AGD) is to coordinate “green” with “development” to realize the transformation of current agriculture with high resource consumption and high environmental costs into a green agriculture and countryside with high productivity, high resource use efficiency and low environmental impact. This is a formidable task, requiring joint efforts of government, farmers, industry, educators and researchers. The innovative concept for AGD will focus on reconstructing the whole crop-animal production and food production-consumption system, with the emphasis on high thresholds for environmental standards and food quality as well as enhanced human well-being. This paper addresses the significance, challenges, framework, pathways and potential solutions for realizing AGD in China, and highlights the potential changes that will lead to a more sustainable agriculture in the future. Proposals include interdisciplinary innovations, whole food chain improvement and regional solutions. The implementation of AGD in China will provide important implications for the countries in developmental transition, and contribute to global sustainable development.  相似文献   
4.
Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide range of impacts on the above- and belowground communities. An increase in high N availability has been assumed to be a major mechanism enhancing the abundance of above- and belowground communities. In addition to increasing available N, however, N enrichment causes soil acidification, which may negatively affect above- and belowground communities. The relative importance of increased N availability vs. increased soil acidity for above- and belowground communities in natural ecosystems experiencing N enrichment is unclear. In a 12-year N enrichment experiment in a semi-arid grassland, N enrichment substantially increased both above- and belowground plant biomass mainly via the N availability-induced increase in biomass of perennial rhizome grasses. N enrichment also dramatically suppressed bacterial, fungal, and actinobacteria biomass mainly via the soil acidification pathway (acidification increased concentrations of H+ ions and Al3+ and decreased concentrations of mineral cations). In addition, N enrichment also suppressed bacterial-, fungal-feeding, and omnivorous + carnivorous nematodes mainly via the soil acidification pathway (acidification reduced nematode food resources and reduced concentrations of mineral cations). The positive effects resulting from the increase in belowground carbon allocation (via increase in quantity and quality of plant production) on belowground communities were outweighed by the negative effects resulting from soil acidification, indicating that N enrichment weakens the linkages between aboveground and belowground components of grassland ecosystems. Our results suggest that N enrichment-induced soil acidification should be included in models that predict biota communities and linkages to carbon and nitrogen cycling in terrestrial ecosystems under future scenarios of N deposition.  相似文献   
5.
《Geoderma》2001,99(3-4):317-328
Experiments on the sorption of dissolved organic carbon (DOC) in soils were mainly conducted in batch approaches. Because varying setups were used in these studies, comparison of the results requires knowledge on the effects that different experimental conditions may have on the sorption of DOC. This investigation evaluated the DOC sorption of soils using differently pretreated soil samples (field-fresh (two sampling dates), air-dried, stored at 3°C and −18°C), at different soil-to-solution ratios (1:40, 1:20, 1:10 and 1:5 w/v) and different temperatures (5°C, 15°C, 25°C and 35°C). The sorption of DOC was analyzed using the initial mass (IM) approach, which regressed the initial amount of sorbate (normalized to soil mass) against the sorbed amount (normalized to soil mass). The DOC release — when a solution without DOC was added — strongly increased with temperature and soil-to-solution ratio. Among the different types of sample storage and preparation, air-drying resulted in the largest DOC release. The smallest release was from the field-fresh samples. Freezing and storage at 3°C resulted in intermediate DOC release with freezing having the greater effect. The release from air-dried samples exceeded that of field-fresh samples by a factor of four at maximum. In contrast, none of the experimental setups influenced the slope of the IM isotherms. Thus, it seems possible to compare directly the binding affinity of DOC to different soils as determined at varying experimental conditions.  相似文献   
6.
Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a major process providing DOM in soils. Herein, we examine processes causing the commonly observed increase in contribution of aromatic compounds to WSOM during litter decomposition, and unravel the relationship between lignin degradation and the production of aromatic WSOM. We analysed amounts and composition of water-soluble organic matter (WSOM) produced during 27 months of decomposition of leaves and needles (ash, beech, maple, spruce, pine). The contribution of aromatic compounds to WSOM, as indicated by the specific UV absorbance of WSOM, remained constant or increased during decomposition. However, the contribution of lignin-derived compounds to the total phenolic products of 13C-labelled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis increased strongly (by >114%) within 27 months of decomposition. Simultaneous changes in contents of lignin phenols in solid litter residues (cupric oxide method as well as 13C-TMAH thermochemolysis) were comparably small (−39% to +21% within 27 months). This suggests that the increasing contribution of lignin-derived compounds to WSOM during decomposition does not reflect compositional changes of solid litter residues, but rather the course of decomposition processes. In the light of recently published findings, these processes include: (i) progressive oxidative alteration of lignin that results in increasing solubility of lignin, (ii) preferential degradation of soluble, non-lignin compounds that limits their contribution to WSOM during later phases of decomposition.  相似文献   
7.
小麦/大豆间作氮磷肥效的双变量分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用双变量分析法,分析小麦/大豆间作氮磷肥效.结果表明:①小麦/大豆间作种植施用磷肥对大豆的增产作用超过小麦,施用氮肥能明显提高间作系统中小麦产量,但大豆产量降低.②小麦/大豆间作的产量互补效应表现为:小麦产量提高,大豆产量相应下降;大豆产量提高,小麦产量变化不大.③在小麦/大豆间作中,施磷提高小麦千粒重,增加大豆粒数;施氮增加小麦穗粒数,降低小麦与大豆的千粒重.氮磷配施,磷肥能缓冲施氮引起的小麦与大豆千粒重的降低.  相似文献   
8.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   
9.
Variation in nitrogen (N) acquisition ability is known to exist among maize genotypes. Field experiments were conducted and the N-efficient maize inbred line 478 and the N-inefficient line Wu312 were employed to illustrate whether the amount of N taken up in maize plants with different N acquisition ability was determined by the shoot growth potential or by the root size. To meet the accelerated growth of the shoot from the jointing stage to the grain-filling stage, the net N gain in whole plants of both genotypes increased dramatically and accounted for 77% and 74% of the total N increment in 478 and Wu312, respectively. Similarly, the 4th to 8th nodal root whorls were initiated predominantly between 35 and 76 d after sowing, which accounted for about 90% of the total root length on 93 d after sowing. The whole plant N content of the N-efficient 478 was significantly higher than that of the N-inefficient Wu312. 478 had also longer root length, including axial and lateral roots, of the embryonic roots and each whorl of shoot-borne roots, and greater root length density (RLD) than Wu312. In spite of the smaller root size, Wu312 had higher shoot N concentration than 478 during the whole growth period, implying that N was not limited for shoot growth in Wu312. It was concluded that maize root growth, especially initiation and development of the shoot-borne roots, as well as the amount of N taken up were coordinated with shoot growth and demand for nutrients. Although a large root system and high RLD in the soil profile were beneficial for efficient N acquisition, amount of N taken up by the two maize genotypes in the presence of sufficient N supply was determined by the shoot growth potential, and not by the root size.  相似文献   
10.
The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring barley–(faba bean or grass-clover)–potato–winter wheat. Experiments were done at three locations representative of the different soil types and climatic conditions in Denmark. The three organic systems that included faba bean as the N fixing crop comprised a system with manure (stored pig slurry) and undersowing catch crops (OF + C + M), a system with manure but without undersowing catch crops (OF ? C + M), and a system without manure and with catch crops (OF + C ? M). A grass-clover green manure was used as N fixing crop in the other organic system with catch crops (OG + C + M). Cuttings of grass-clover were removed from the plots and an equivalent amount of total-N in pig slurry was applied to the cropping system. The conventional rotation included mineral fertilizer and catch crops (CF + C + F), although only non-legume catch crops were used. Measurements of cereal dry matter (DM) at harvest and of grain N contents were done in all plots. On average the FASSET model was able to predict the yield and grain N of cereals with a reasonable accuracy for the range of cropping systems and soil types studied, having a particularly good performance on winter wheat. Cereal yields were better on the more loamy soil. DM yield and grain N content were mainly influenced by the type and amount of fertilizer-N at all three locations. Although a catch crop benefit in terms of yield and grain N was observed in most of the cases, a limited N availability affected the cereal production in the four organic systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号