首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
农学   5篇
基础科学   3篇
  2篇
综合类   2篇
农作物   1篇
园艺   2篇
植物保护   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2007年   1篇
  2006年   3篇
  1999年   1篇
  1996年   1篇
  1988年   1篇
排序方式: 共有17条查询结果,搜索用时 93 毫秒
1.
Wheat–cotton rotations largely increase crop yield and improve resources use efficiency, such as the radiation use efficiency. However, little information is available on the nitrogen (N) utilization and requirement of cotton under wheat–cotton rotations. This study was to determine the N uptake and use efficiency by evaluating the cotton (Gossypium hirsutum L.) N use and the soil N balances, which will help to improve N resource management in wheat–cotton rotations. Field experiments were conducted during 2011/2012 and 2012/2013 growing seasons in the Yangtze River region in China. Two cotton cultivars (Siza 3, mid-late maturity with 130 days growth duration; CCRI 50, early maturity with 110 days growth duration) were planted under four cropping systems including monoculture cotton (MC), wheat/intercropped cotton (W/IC), wheat/transplanted cotton (W/TC) and wheat/direct-seeded cotton (W/DC). The N uptake and use efficiency of cotton were quantified under different cropping systems. The results showed that wheat–cotton rotations decreased the cotton N uptake through reducing the N accumulation rate and shortening the duration of fast N accumulation phase as compared to the monoculture cotton. Compared with MC, the N uptake of IC, TC and DC were decreased by 12.0%, 20.5% and 23.4% for Siza 3, respectively, and 7.3%, 10.7% and 17.6% for CCRI 50, respectively. Wheat–cotton rotations had a lower N harvest index as a consequence of the weaker sink capacity in the cotton plant caused by the delayed fruiting and boll formation. Wheat–cotton rotations used N inefficiently relative to the monoculture cotton, showing consistently lower level of the N agronomic use efficiency (NAE), N apparent recovery efficiency (NRE), N physiological efficiency (NPE) and N partial factor productivity (NPFP), particularly for DC. Relative to the mid–late maturity cultivar of Siza 3, the early maturity cultivar of CCRI 50 had higher N use efficiency in wheat–cotton rotations. An analysis of the crop N balance suggested that the high N excess in preceding wheat (Triticum aestivum L.) in wheat–cotton rotations led to significantly higher N surpluses than the monoculture cotton. The N management for the cotton in wheat–cotton rotations should be improved by means of reducing the base fertilizer input and increasing the bloom application.  相似文献   
2.
Mulching the soil surface with a layer of plant residue is considered an effective method of conserving water and soil because it increases water infiltration into the soil, reduces surface runoff and the soil erosion, and reduces flow velocity and the sediment carrying capacity of overland flow. However, application of plant residues increases operational costs and so optimal levels of mulch in order to prevent soil and/or water losses should be used according to the soil type and rainfall and slope conditions. In this study, the effect of wheat straw mulch rate on the total runoff and total soil losses from 60-mm simulated rainstorms was assessed for two intensive rainfalls (90 and 180 mm h−1) on three slope gradients typical conditions on the Loess Plateau of China and elsewhere. For short slopes (1 m), the optimal mulch rate to save water for a silt loam and a loam soil was 0.4 kg m−2. However, for a clay loam soil the mulch rate of 0.4 kg m−2 would be optimal only under the 90 mm h−1 rainfall; 0.8 kg m−2 was required for the 180 mm h−1. In order to save soil, a mulch rate of 0.2 kg m−2 on the silt loam slopes prevented 60%–80% of the soil losses. For the loam soil, mulch at the rate of 0.4 kg m−2 was essential in most cases in order to reduce soil losses substantially. For the clay loam, 0.4 kg m−2 may be optimal under the 90 mm h−1 rain, but 0.8 kg m−2 may be required for the 180 mm h−1 rainstorm. These optimal values would also need to be considered alongside other factors since the mulch may have value if used elsewhere. Hence doubling the optimal mulch rate for the silt loam soil from 0.2 kg m−2 or the clay loam soil under 90 mm h−1 rainfall from 0.4 kg m−2 in order to achieve a further 10% reduction in soil loss needs to be assessed in that context. Therefore, Optimal mulch rate can be an effective approach to virtually reduce costs or to maximize the area that can be treated. Meantime, soil conservationist should be aware that levels of mulch for short slopes might not be suitable for long slopes.  相似文献   
3.
Data is presented comparing infiltration of irrigation and rain water to potato crops planted in ridges and beds in East Anglia, UK. An automatic soil water station (ASWS) was used to monitor soil water content and potential in the two cultivation systems. The ASWS data indicated that most of the water bypassed the potatoes planted in ridges as irrigation water applied to the crop from a boom irrigator was shed off the ridges infiltrating in the furrows. This was due to the water repellent nature of the sandy soil and meant that the irrigation water bypassed the potatoes. A soil water deficit built up in the core of the ridge as the crop grew and was not replenished by irrigations. A second early potato crop planted in beds was more successful at capturing water as the flat bed increased water infiltration around the crop. This has major implications for cultivation practice, scab control and crop water management. Instruments measuring soil water potential, content, temperature and rainfall were connected to a data logger powered by a solar panel and proved a successful way of monitoring infiltration. Hourly data was collected so that a high temporal resolution data set could be constructed in order to increase conceptual understanding of hydrological processes at a scale appropriate to the crop.  相似文献   
4.
在花后充分供水与控水条件下,对两个水稻回交组合干物质积累、分配及产量性状进行研究,并进行相关分析。研究花后水分亏缺对水稻回交后代干物质积累、分配及产量的影响。结果表明:花后控水处理水稻回交后代群体干物质积累较对照显著减少,干物质运转和分配同时受到一定影响,并且控水处理的每穗结实粒数、结实率和千粒重均降低,导致经济产量下降。花后水分亏缺籽粒产量与总干重、籽粒产量与穗干重间均呈显著正相关。  相似文献   
5.
咸水沟灌对土壤水盐变化与棉花生长及产量的影响   总被引:3,自引:1,他引:2  
为持续高效利用咸水资源,在棉花长期定位咸水沟灌试验(始于2006年)的基础上,研究了不同矿化度(1、2、4、6、8、10 g/L)咸水连续灌溉第10年土壤水盐分布与棉花生长响应以及历年土壤盐分和籽棉产量的变化特征。结果表明:1)年际间,各处理0~100 cm土层土壤盐分受灌溉和降水影响而波动,但未随灌溉年限的增加而逐渐累积,灌溉水矿化度≤4 g/L处理可基本维持土壤盐分周年补排平衡。单个棉花生长季(2015年),各处理沟底部位的土壤含水率大于垄上,灌溉水矿化度≥6 g/L时主根层土壤含水率高于1 g/L处理;土壤盐分随灌溉水矿化度增加而增大,随棉花生育期的推进先增大后降低,灌水沟剖面土壤盐分呈向垄上和深层运移的趋势;与播种时比,棉花收获后各处理主根层土壤盐分均未出现累积。2)低矿化度咸水沟灌对棉花成苗率、株高和叶面积指数影响不明显,超过一定限值后3项指标显著下降,与1 g/L处理相比,当灌溉水矿化度达到6 g/L时棉花成苗率和叶面积指数显著降低,当灌溉水矿化度达到8 g/L时株高显著降低;咸水沟灌对棉花纤维品质影响较小,5项品质指标在处理间差异均不显著。3)适量浓度的咸水灌溉对籽棉产量影响较小,与1 g/L灌水处理相比,2和4 g/L处理对历年籽棉产量(2006-2015年)无显著影响,大于6 g/L时历年籽棉产量显著降低。在该研究灌溉制度下,推荐试验区咸水沟灌棉花的灌溉水矿化度阈值为4 g/L。  相似文献   
6.
在花后充分供水与控水条件下,对两个水稻回交组合干物质积累、分配及产量性状进行研究,并进行相关分析。研究花后水分亏缺对水稻回交后代干物质积累、分配及产量的影响。结果表明:花后控水处理水稻回交后代群体干物质积累较对照显著减少,干物质运转和分配同时受到一定影响,并且控水处理的每穗结实粒数、结实率和千粒重均降低,导致经济产量下降。花后水分亏缺籽粒产量与总干重、籽粒产量与穗干重间均呈显著正相关。  相似文献   
7.
A better understanding of crop growth and nutrient uptake responses to the depth of fertilizer banded-placement in the soil is needed if growth and nutrient uptake responses are to be maximized. A two-year field study covering two rape seasons (2010–2011 and 2011–2012) was conducted to examine the effect of banded-placement of N–P–K fertilizer at various depths on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). The results showed that fertilization at 10 cm and 15 cm soil depth produced greater taproot length and dry weight than fertilization at 0 cm and 5 cm. 0 cm and 5 cm deep fertilization significantly increased the lateral root distribution at 0–5 cm soil depth, while 10 cm and 15 cm deep fertilization induced more lateral root proliferation at 5–15 cm soil depth. At 36 days after sowing (DAS), 5 cm deep fertilization produced better aboveground growth and nutrient uptake than 10 cm and 15 cm deep fertilization. However, reversed results were observed after 36 DAS. 10 cm and 15 cm deep fertilization produced more rapeseed than 0 cm and 5 cm deep fertilization, moreover, the yield difference was more significant in drought season (2010–2011) than in relatively normal season (2011–2012). In summary, these results preliminarily suggest that both 10 cm and 15 cm are relatively proper fertilizer placement depth when the practice of banding fertilizer is used in oilseed rape production. But from the viewpoint of diminishing the production cost, 10 cm deep fertilization should be recommended in actual farming. Because 15 cm deep fertilization may require higher mechanical power input, and thus resulting in higher cost of production.  相似文献   
8.
不同钾肥处理对甜叶菊生长发育及叶产量的影响   总被引:4,自引:1,他引:3  
研究了不同钾肥处理对甜叶菊生长发育和叶产量的影响,结果表明:随施钾量的增加,菊株株高、茎粗、出叶速度、叶面积及叶产量均有一定的增加,其中以120kg/hm2施用效果最佳,因此适量的钾肥可促进甜叶菊生长发育和叶产量的增加.  相似文献   
9.
干旱胁迫对不同冬小麦品种幼苗期生理特性的影响   总被引:2,自引:0,他引:2  
研究小麦幼苗时期生理指标等方面的抗旱特性,为今后抗旱小麦新品种的培育提供基础的理论依据。选用5个肥水类型不同的小麦品种,在20% PEG-6000(w/v)水分胁迫条件下,研究不同冬小麦品种幼苗时期的生理抗旱特性,并对幼苗期抗旱生理指标与抗旱指数做了相关性分析。结果表明,在20%的PEG-6000(w/v)渗透胁迫后,5个小麦品种渗透调节物质可溶性糖和脯氨酸含量均上升,且上升的程度与抗旱性一致;胁迫条件下保护酶系统SOD和POD活性均降低,其中POD活性呈先上升后降低的趋势;膜脂过氧化产物MDA含量升高。与高肥水品种相比,‘青麦7号’和‘鲁麦21’的可溶性糖和脯氨酸含量较高,随胁迫时间延长增加的幅度大;MDA含量积累的速度以及SOD、POD活性降低的速度较为缓慢。其中,可溶性糖含量、脯氨酸含量、SOD活性以及POD活性与抗旱性鉴定指标抗旱指数存在极显著相关性,可以作为小麦抗旱性鉴定的早期生理指标。  相似文献   
10.
利用植物生长调节剂Z-S对高产旱稻北农大65在三叶一心、拔节期和孕穗期进行叶面喷施,研究其对高产旱稻花后衰老的影响.结果表明:浓度为100 mg/kg Z-S叶面喷施后根系活力、根系SOD、CAT活性及可溶性蛋白质含量均明显高于其它处理;100 mg/kg Z-S喷施后旗叶可溶性蛋白质含量明显增加,而旗叶SOD、CAT活性较其它处理没有明显上升,高浓度处理(≥300 mg/kg)促进植株体内MDA累积,造成早衰.从产量方面看,100 mg/kg的Z-S喷施能有效提高旱稻的产量和经济系数.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号