首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   5篇
  国内免费   1篇
林业   10篇
农学   13篇
基础科学   16篇
  68篇
综合类   9篇
农作物   5篇
水产渔业   1篇
畜牧兽医   14篇
园艺   35篇
植物保护   7篇
  2024年   1篇
  2023年   19篇
  2022年   7篇
  2021年   1篇
  2020年   2篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   14篇
  2014年   11篇
  2013年   10篇
  2012年   14篇
  2011年   7篇
  2010年   7篇
  2009年   7篇
  2008年   2篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   2篇
  2003年   2篇
  2002年   7篇
  2001年   5篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1988年   5篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
Scientific interest in geophysical information about land surface temperature (LST) is ever increasing, as such information provides a base for a large number of applications, including environmental and agricultural monitoring. Therefore, the research of LST retrieval has become a hot topic. Recent availability of Landsat-8 satel- lite imagery provides a new data source for LST retrieval. Hence, exploring an adaptive method with reliable ac- curacy seems to be essential. In this study, basing on features of Landsat-8 TIRS thermal infrared channels, we re-calculated parameters in the atmospheric transmittance empirical models of the existing split-window algorithm, and estimated the ground emissivity with the help of the land cover classification map of the study area. Further- more, a split-window algorithm was rebuilt by virtual of the estimation model of the updated atmospheric transmit- tance and the ground emissivity, and then a remote sensing retrieval for the LST of Shihezi city in Xinjiang Uygur autonomous region of Northwest China was conducted on the basis of this modified algorithm. Finally, precision validation of the new model was implemented by using the MODIS LST products. The results showed that the LST retrieval from Landsat-8 TIRS data based on our algorithm has a higher credibility, and the retrieved LST is more consistent with the MODIS LST products. This indicated that the modified algorithm is suitable for retrieving LST with competitive accuracy. With higher resolutions, Landsat-8 TIRS data may provide more accurate observation for LST retrieval.  相似文献   
2.
Estimating spatial mean soil water contents from point-scale measurements is important to improve soil water management in sloping land of semiarid areas. Temporal stability analysis, as a statistical technique to estimate soil water content, is an effective tool in terms of facilitating the upscaling estimation of mean values. The objective of this study was to examine temporal stability of soil water profiles (0–20, 20–40, 40–60 and 0–60 cm) in sloping jujube (Zizyphus jujuba) orchards and to estimate field mean root-zone soil water based on temporal stability analysis in the Yuanzegou catchment of the Chinese Loess Plateau, using soil water observations under both dry and wet soil conditions. The results showed that different time-stable locations were identified for different depths and the temporal stability of soil water content in 20–40 cm was significantly (P < 0.05) weaker than that in other depths. Moreover, these time-stable locations had relatively high clay contents, relatively mild slopes and relatively planar surfaces compared to the corresponding field means. Statistical analysis revealed that the temporal stability of root zone soil water (0–60 cm) was higher in either dry or wet season than that including both, and soil water exhibited very low temporal stability during the transition period from dry to wet. Based on the temporal stability analysis, field mean soil water contents were estimated reasonably (R2 from 0.9560 to 0.9873) from the point measurements of these time-stable locations. Since the terrains in this study are typical in the hilly regions of the Loess Plateau, the results presented here should improve soil water management in sloping orchards in the Loess Plateau.  相似文献   
3.
Soil salinity is often heterogeneous, yet plant response to unequal salt distribution (USD) in the root zone is seldom studied in cotton (Gossypium hirsutum L.). Our objective was to evaluate the effects of USD on growth and yield, as well as its potential application for increasing cotton production. To achieve this objective, greenhouse and field experiments were conducted. In the first experiment, potted cotton plants were grown in a split-root system in the greenhouse. Each root half was irrigated with either the same or two concentrations of NaCl. Plant biomass, leaf chlorophyll (Chl), photosynthesis (Pn) and transpiration (Tr), Na+ and K+ accumulation, as well as biological and economic yields were determined. In the second experiment, plants were grown in furrow-beds in saline fields with those grown on flat beds as controls. Root-zone salinity, yield and yield components and earliness (the percentage of the first two harvests to total harvests) were monitored. When the entire root system was exposed to the same concentration of NaCl, shoot dry weight, leaf area, plant biomass, leaf Chl, Pn and Tr were markedly reduced relative to the NaCl-free control at 2 weeks after salinity stress (WAS). Significant reductions in biological (23.6–73.8%) and economic yields (38.1–79.7%) were noticed at harvest. However, when only half of the root system was exposed to low-salinity, the inhibition effect of salinity on growth and yield was significantly reduced. Plant biomass and seed cotton yield were increased by 13 and 23.9% with 50/150 mM/mM NaCl, 40 and 44.5% with 100/300 mM/mM NaCl, and 85.7 and 127.8% with 100/500 mM/mM NaCl relative to their respective equal salt distribution (ESD) controls (100/100, 200/200, and 300/300). Unequal salt distribution also decreased concentrations of Na+ and increased leaf K+ and Chl content, K+/Na+ ratio, Pn and Tr, compared with ESD. Furrow-bed seeding induced unequal distribution of salts in the surface soil during the field experiment. Under furrow planting, soil salinity was much higher, but soil osmotic potential was much lower on the ridged part than the furrows. Yield and earliness were increased 20.8 and 5.1% by furrow seeding relative to flat seeding. These enhancements were mainly attributed to unequal distribution of salts in the root zone. Thus, specific cultural practices that induce unequal salt distribution such as furrow-bed seeding can be used to improve cotton production in saline fields.  相似文献   
4.
Ammonia oxidation is a critical step in the soil nitrogen (N) cycle and can be affected by the application of mineral fertilizers or organic manure. However, little is known about the rhizosphere effect on the function and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities, the most important organisms responsible for ammonia oxidation in agricultural ecosystems. Here, the potential nitrification activity (PNA), population size and composition of AOB and AOA communities in both the rhizosphere and bulk soil from a long-term (31-year) fertilizer field experiment conducted during two seasons (wheat and maize) were investigated using the shaken slurry method, quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis. N fertilization greatly enhanced PNA and AOB abundance, while manure application increased AOA abundance. The community structure of AOB exhibited more obvious shifts than that of AOA after long-term fertilization, resulting in more abundant AOB phylotypes similar to Nitrosospira clusters 3 and 4 in the N-fertilized treatments. Moreover, PNA was closely correlated with the abundance and community structure of AOB rather than that of AOA among soils during both seasons, indicating that AOB play an active role in ammonia oxidation. Conversely, the PNA and population sizes of AOB and AOA were typically higher in the rhizosphere than the bulk soil, implying a significant rhizosphere effect on ammonia oxidation. Cluster and redundancy analyses further showed that this rhizosphere effect played a more important role in shaping AOA community structure than long-term fertilization. Overall, the results indicate that AOB rather than AOA functionally dominate ammonia oxidation in the calcareous fluvo-aquic soil, and that rhizosphere effect and fertilization regime play different roles in the activity and community structures of AOB and AOA.  相似文献   
5.
The Chinese Central government's policy to re-vegetate large areas of the Loess Plateau is currently being rapidly implemented at the provincial, prefecture, county, township, and village levels of government. Managers at these five levels of government need access to information to assist them to plan the land use change prior to performing on-ground activities. To this end, the suitability of 38 predominately native species in the 113,000 km2 Coarse Sandy Hilly Catchments (CSHC) has been mapped at a 100 m resolution. In this data-sparse region, this was achieved by using a five-variable spatial overlay approach as we were able to readily access the required environmental variables and rule-set defining the species’ requirements (or tolerances). As the rules did not consider optimal growth they were possibly ‘too inclusive’, so the spatial extent of areas suggested for re-planting was refined by defining ‘target areas’ for trees, shrubs and grasses based on precipitation, aspect, landform, and slope. In the land-use planning criteria developed here we suggest that hill-slopes and gullies with slopes greater than or equal to 15° (defined from a 100 m resolution DEM) be left for natural succession. Due to lateral flow of water, sediment and nutrients from these steep slope and gullies, further prioritising re-vegetation target areas to the zone adjacent to and down slope from these steep portions of the landscape reduces sediment entering the river network with a minimal decrease of regional stream flow. These two functions (mapping species suitability and locating where priority and target re-vegetation activities should be undertaken) are available at a 100 m resolution for the entire CSHC by accessing a bilingual decision support tool called ReVegIH (Re-Vegetation Impacts on Hydrology). Finally, an ecohydrological model was used to simulate changes in average annual stream flow originating from the CSHC based on implementing the ‘target’ and ‘priority’ area re-vegetation activities within the constraints of two land limits.  相似文献   
6.
环青海湖地区草地蝗虫发生测报的气候指标研究   总被引:7,自引:0,他引:7       下载免费PDF全文
采用次序统计量方法,以1988~1999年环青海湖地区草地蝗虫发生程度资料和气候资料研究了蝗虫灾害等级与当地气候指标的定量关系,建立了春季和夏季预测模型,并以此对2000~2003年该地区蝗虫发生状况进行了预测试验。结果表明,敏感气候因子有:上年11~12月气温、3~6月温度及5~6月降水量等。春季预测模型中的指标为:(1)T11<-6℃;(2)T12<-10℃;(3)T3>-4℃;(4)T4>2℃。夏季预测模型中的指标为:(1)(T11+T12)/2<-8.5℃;(2)(T3+T4)/2>-1.5℃;(3)(T5+T6)>7.5℃;(4)(R5+R6)<48mm。当模型中有3个或4个指标满足,则当年可能发生严重蝗虫灾害,当没有或只有1~2个指标满足,则不会发生严重蝗虫灾害。  相似文献   
7.
Relative performance of artificial neural networks (ANNs) and the conceptual model SALTMOD was studied in simulating subsurface drainage effluent and root zone soil salinity in the coastal rice fields of Andhra Pradesh, India. Three ANN models viz. Back Propagation Neural Network (BPNN), General Regression Neural Network (GRNN) and Radial Basis Function Neural Network (RBFNN) were developed for this purpose. Both the ANNs and the SALTMOD were calibrated and validated using the field data of 1998–2001 for 35 and 55 m drain spacing areas. Data on irrigation depth, evapotranspiration, drain discharges, water table depths, mean monthly rainfall and temperature and drainage effluent salinity were used for ANN model training, testing and validation. It was observed that the BPNN model with feed forward learning rule with 6 processing elements in input layer and 1 hidden layer with 12 processing elements performed better than the other ANN models in predicting the root zone soil salinity and drainage effluent salinity. Considering coefficient of determination, model efficiency and variation between the observed and predicted salinity values as the evaluation parameters, the SALTMOD performed better in predicting root zone soil salinity and the BPNN performed better in predicting the drainage effluent salinity. Therefore, it was concluded that the BPNN with feed forward learning algorithm was a better model than SALTMOD in predicting salinity of drainage effluent from salt affected subsurface drained rice fields.  相似文献   
8.
Water redistribution has a profound influence on dryland ecosystem function. This hydrological function is largely regulated by ecosystem engineers including biological soil crusts (biocrusts) which produce run-off, and burrowing animals, such as the greater bilby, whose pits capture water. We estimated the relative importance of these two ecosystem engineers in determining infiltration rates in a system where dune slopes shed water to adjacent interdune swales to maximize overall productivity. Also, we determined which biocrust property was most hydrologically important: total cover, composition, patch aggregation or spatial heterogeneity. While both biocrusts and burrowing animals equally affected the overall infiltration through macro- and micropores (under ponding), only biocrusts were important for the infiltration specifically via micropores (under tension). Of the studied biocrust properties, community composition was the strongest influence such that the greater the prevalence of early successional biocrust patches, the greater the infiltration rate. Greater total cover of biocrusts reduced infiltration, and the spatial properties were relatively unimportant. Although bilbies and biocrusts comparably influenced infiltration under ponding at the microscale, realistic cover of bilby pits at the landscape scale is unlikely to strongly impair the hydrological function of dunes. Reintroduction of the endangered bilby may enhance nutrient cycling and plant recruitment via its seed and resource capturing pits, without a concomitant disruption of hydrological function. In contrast, removal of biocrusts caused by, e.g., livestock trampling, is expected to strongly enhance infiltration in the run-off areas, strongly reducing ecosystem productivity at the landscape scale.  相似文献   
9.
Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the “true” flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include “tall tower” instrumentation), one grassland site, and one agricultural site, to conduct a cross-site analysis of random flux error. Quantification of this uncertainty is a prerequisite to model-data synthesis (data assimilation) and for defining confidence intervals on annual sums of net ecosystem exchange or making statistically valid comparisons between measurements and model predictions.We differenced paired observations (separated by exactly 24 h, under similar environmental conditions) to infer the characteristics of the random error in measured fluxes. Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian), distribution, and increase as a linear function of the magnitude of the flux for all three scalar fluxes. Across sites, variation in the random error follows consistent and robust patterns in relation to environmental variables. For example, seasonal differences in the random error for H are small, in contrast to both LE and FCO2, for which the random errors are roughly three-fold larger at the peak of the growing season compared to the dormant season. Random errors also generally scale with Rn (H and LE) and PPFD (FCO2). For FCO2 (but not H or LE), the random error decreases with increasing wind speed. Data from two sites suggest that FCO2 random error may be slightly smaller when a closed-path, rather than open-path, gas analyzer is used.  相似文献   
10.
《CATENA》2005,60(2):129-146
Although it is well known that ephemeral gully erosion is a process of a recurrent nature and its contribution to total sediment production is far from negligible, there is a gap in the assessment of changes that the ephemeral gullying cycle produces in the fields' landscape and in the general economic balance of farms (the cost of erosion). The present paper applies a method for assessing the topographic changes produced by concentrated flow erosion, mainly ephemeral gullies, and their filling by farmers. The method is based on the comparison of multi-date detailed topographic data (digital elevation models, DEMs). In the case study, 0.20-m spatial resolution DEMs of March 2000, June 2000 and July 2002 were used to assess the changes in a vineyard field (located in the Penedès region, Catalonia, NE Spain), in which there are hillside ditches (broadbase terraces) that function as sediment traps to avoid major soil loss. The study period was divided into two, according to an extreme rainfall event that occurred on 10 June 2000, in which 214.6 mm fell in 1 day, representing 44% of the annual precipitation. This storm, with a return period in the area of 105 years, displaced 282±4 Mg ha−1 of sediment, 58% of which was due to concentrated surface runoff that caused considerable surface lowering (ephemeral gullies) of up to 0.4–0.5 m deep in some parts of the field. During the second period, about 208±3 Mg ha−1 of soil and sediment deposited in the hillside ditches was used to fill ephemeral gullies. The general sediment/soil balance at the locations where ephemeral gullies recurrently occur is negative (−74±3 Mg ha−1), indicating that recurrent concentrated surface runoff is producing a progressive surface lowering of those zones. The research also assessed the efficiency of the hillside ditches as sediment traps. A total of 113±2 Mg ha−1 was deposited in these structures during the period March 2000–June 2000 (in which the extreme rainfall event occurred), which represents 54% of the material used to fill ephemeral gullies in the period June 2000–July 2002. Finally, the cost of erosion, evaluated as the cost of the operations necessary to redistribute the sediment/soil over the field and to repair the hillside ditches, represented 5% of the income of the farms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号