首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   105篇
  国内免费   199篇
林业   24篇
农学   70篇
基础科学   45篇
  646篇
综合类   366篇
农作物   42篇
水产渔业   1篇
畜牧兽医   31篇
园艺   36篇
植物保护   40篇
  2024年   19篇
  2023年   66篇
  2022年   79篇
  2021年   96篇
  2020年   81篇
  2019年   90篇
  2018年   84篇
  2017年   73篇
  2016年   81篇
  2015年   87篇
  2014年   84篇
  2013年   63篇
  2012年   83篇
  2011年   52篇
  2010年   18篇
  2009年   38篇
  2008年   18篇
  2007年   52篇
  2006年   56篇
  2005年   25篇
  2004年   9篇
  2002年   3篇
  2001年   10篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1988年   6篇
  1976年   1篇
排序方式: 共有1301条查询结果,搜索用时 15 毫秒
1.
不同施肥模式对玉米各器官碳氮累积和分配的影响   总被引:3,自引:0,他引:3  
以长期定位试验为依托,选取:1)不施肥(CK);2)农民习惯施肥(FP);3)推荐施肥(OP);4)有机肥氮替代100%化肥氮(OM);5)有机肥氮替代50%化肥氮(MF)5个处理,研究不同施肥模式对玉米植株及各器官碳氮含量、碳氮分配比例及C/N的影响,为西南紫色土地区合理施肥、作物增产提供科学依据。结果表明,与FP处理相比,MF处理显著增加了玉米植株生物量,达26.2%。相比OM和OP处理,MF处理显著增加玉米苞叶和根茬中碳浓度,分别增加5.4、4.2 g·kg-1和7.4、21.3 g·kg-1,同时增加玉米苞叶、根茬、穗轴和籽粒中的碳储量,玉米茎秆和籽粒中的氮储量也有增加。此外,相比FP处理,MF处理能显著增加玉米整株的碳储量和氮储量,达29.1%和16.9%。等氮水平下,MF、OP处理均能增加玉米苞叶和籽粒中碳同化物的分配比例,MF处理玉米籽粒中氮素的分配比例较OP和OM处理分别增加1.7%和3.6%,同时MF处理能使玉米维持较高的C/N。综上,有机肥氮替代50%化肥氮能增加玉米植株的生物量,同时提高玉米对氮素的吸收和碳素的累积,增加玉米籽粒中碳同化物和氮素的分配比例,同时,有机肥氮替代50%化肥氮能使玉米植株维持较高的C/N,有利于产量的形成,该施肥方式不仅能够促进氮素的高效利用,减少化肥的投入,还能够减少化肥损失,降低氮素损失引发的环境风险。  相似文献   
2.
Increasing woodland area in the United Kingdom is strongly supported in policies, but there is evidence of low rates of new planting, infrequent uptake of farm forestry, and negative attitudes to woodland among farmers. Additionally, there is a wider context of increasing farm diversification, and a need for greater understanding of farmers' attitudes and behaviour related to afforestation. This paper uses a representative survey of Scottish farmers (survey year: 2013, respondents used in analysis: 1735) to compare farmers who intended to expand forestry in future and farmers with alternative combinations of intended and past behaviour in relation to forestry. Overall, we find that certain characteristics: already operating forestry, reporting types of non-farming activities, involvement in environmental schemes, having a high education level, having a relatively high number of employees, and being relatively recent entrants to holdings, were more frequently found among farmers intending to increase forestry in future than farmers described as ‘non-increasers’ who did not intend to increase forestry and also had not expanded it in the past. Farmers with these characteristics could be a useful focus in attempts to expand woodland at larger scales, and encouraging small-scale tree planting could be an effective policy approach.  相似文献   
3.
Paddy and Water Environment - Soil salinization is a major soil degradation threat worldwide. Sparse vegetation and soil desertification are widespread phenomena in coastal saline land due to high...  相似文献   
4.
Excessive application of N fertilizer in pursuit of higher yields is common due to poor soil fertility and low crop productivity. However, this practice causes serious soil depletion and N loss in the traditional wheat cropping system in the Loess Plateau of China. Growing summer legumes as the green manure (GM) crop is a viable solution because of its unique ability to fix atmospheric N2. Actually, little is known about the contribution of GM N to grain and N utilization in the subsequent crop. Therefore, we conducted a four-year field experiment with four winter wheat-based rotations (summer fallow-wheat, Huai bean–wheat, soybean–wheat, and mung bean–wheat) and four nitrogen fertilizer rates applied to wheat (0, 108, 135, and 162 kg N/ha) to investigate the fate of GM nitrogen via decomposition, utilization by wheat, and contribution to grain production and nitrogen economy through GM legumes. Here we showed that GM legumes accumulated 53–76 kg N/ha per year. After decomposing for approximately one year, more than 32 kg N/ha was released from GM legumes. The amount of nitrogen released via GM decomposition that was subsequently utilized by wheat was 7–27 kg N/ha. Incorporation of GM legumes effectively replaced 13–48% (average 31%) of the applied mineral nitrogen fertilizer. Additionally, the GM approach during the fallow period reduced the risk of nitrate-N leaching to depths of 0–100 cm and 100–200 cm by 4.8 and 19.6 kg N/ha, respectively. The soil nitrogen pool was effectively improved by incorporation of GM legumes at the times of wheat sowing. Cultivation of leguminous GM during summer is a better option than bare fallow to maintain the soil nitrogen pool, and decrease the rates required for N fertilization not only in the Loess Plateau of China but also in other similar dryland regions worldwide.  相似文献   
5.
Winter rye (Secale cereale L.) will be especially affected by drought induced yield losses in Central and Eastern Europe in the future because it is predominantly cultivated on low-fertile soils with a poor water-holding capacity. In order to examine the performance of winter rye under different drought conditions, field experiments were carried out during the years 2011, 2012, and 2013 near Braunschweig, Germany. Two sets of genotypes were tested under severe, mild, pre-anthesis, and post-anthesis drought stress in rain-out shelters as well as under rainfed and well-watered conditions. The grain, straw, and total above ground biomass yields, harvest index, grain yield components, leaf area index (LAI), and phenological characteristics were examined, as well as phenotypic correlations between grain yield and further characteristics. Drought induced grain yield reduction ranged from 14 to 57%, while straw yield and harvest index were lesser affected by drought than the grain yield. Under drought conditions, fully ripe was reached up to twelve days earlier than under non water-limited conditions. Pre-anthesis drought mainly reduced spikes m−2 and kernels spike−1 while drought during grain filling reduced the 1000-kernel weight (TKW) only. The grain yield was positively associated with straw yield, spikes m−2, and kernels spike−1 under water limited conditions while the TWK was only positively associated with grain yield under drought during grain filling. Consequently, high pre-anthesis biomass as well as high numbers of spikes m−2 and kernels spike−1 are especially important for obtaining high grain yields under water-limited conditions. Focusing on these traits is, therefore, recommendable for developing drought tolerant rye genotypes.  相似文献   
6.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   
7.
为研究油用亚麻叶片、果球4个发育阶段硬脂酰-酰基载体蛋白脱氢酶基因(sad)表达水平与可溶性糖含量、脂肪含量之间的关系,以3个已知亚麻酸含量相对不同的油用亚麻品种为试验对象,应用q RTPCR技术对不同发育时期组织中sad基因的相对表达量与可溶性糖含量以及脂肪含量之间的关系进行分析。结果表明,在油用亚麻叶片和果球的不同发育阶段sad基因的表达模式符合正态分布,在品种和时期之间表达量差异明显。可溶性糖的含量在果球和叶片中差异明显,相关性分析结果显示,在sad基因表达量增加时,可溶性糖含量相对减少;脂肪含量与sad基因的表达量呈极显著正相关。油用亚麻中sad基因表达直接影响油用亚麻可溶性糖和脂肪含量,进而影响亚麻油的品质。  相似文献   
8.
9.
10.
The weight and composition of soybean seeds (Glycine Max L. Merrill) depend on changes in carbon and nitrogen assimilate supply during grain filling. Soybean pods and seeds are green, evidencing their capacity to capture light. However, the current physiological knowledge does not consider any effect of incident solar radiation reaching the pods on seed weight and composition. The objective of this work was to investigate the response of seed weight and composition to changes in assimilate supply from leaves, to the incident solar radiation reaching the pods and to the combination of both, changes in assimilate supply from the leaves and incident solar radiation on pods of soybean plants. Field experiments were performed during two growing seasons at Balcarce, Argentina. Treatments modified the amount of assimilates supplied by the leaves (plant shading, defoliation), the solar radiation reaching the pods (pod shading) or both (defoliation and pod shading) during seed filling. Plant shading and defoliation reduced seed weight, oil concentration and oil and protein content and increased the concentration of saturated and poli-unsaturated fatty acids while reduced oleic acid percentage. Pod shading increased the concentration of stearic acid and reduced the concentration of linolenic acid. When pods were shaded on defoliated plants, seed weight and oil and protein content decreased while fatty acid composition was similar to values obtained under defoliation treatment. Based on these results, a conceptual model that considers photoheterotrophic nature of reproductive structures of soybean is proposed. Seed weight, oil and protein content and oil fatty acid composition depended on assimilate availability for the seeds. The response of oil and protein content to assimilate supply depended on whether leaves were present or not. The effect of solar radiation incident on pods depended on the amount of assimilates available for the seeds: (i) when carbon allocated was low (defoliation treatments), pods contributed to seed carbon economy but solar radiation incident on them did not affect fatty acid composition; (ii) when carbon allocated to the seeds was high (intact plants), contribution of pods to seed carbon economy was not significant, but the amount of solar radiation incident on pods produced significant changes in fatty acid composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号