首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   4篇
  国内免费   1篇
林业   1篇
农学   179篇
基础科学   6篇
  36篇
综合类   8篇
农作物   43篇
水产渔业   4篇
畜牧兽医   1篇
园艺   1篇
植物保护   11篇
  2022年   2篇
  2020年   2篇
  2017年   3篇
  2016年   4篇
  2015年   10篇
  2014年   8篇
  2013年   15篇
  2012年   8篇
  2011年   20篇
  2010年   22篇
  2009年   16篇
  2008年   9篇
  2007年   31篇
  2006年   15篇
  2005年   5篇
  2004年   14篇
  2003年   6篇
  2002年   5篇
  2001年   13篇
  2000年   2篇
  1999年   3篇
  1998年   15篇
  1997年   6篇
  1996年   7篇
  1995年   11篇
  1994年   4篇
  1993年   9篇
  1992年   9篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有290条查询结果,搜索用时 203 毫秒
1.
E. DUVEILLER 《EPPO Bulletin》1994,24(1):135-157
The literature related to bacterial leaf streak of cereals, due to various pathovars of Xanthomonas campestris , is confusing and dispersed. This review presents a synthesis of the knowledge that has been accumulated on the disease in cereals since the early reports on barley and wheat. The aim is to present the current status on geographical distribution of the disease, to explain possible confusions in symptoms, and to show the limited quantitative information available on losses and on host/pathogen interactions. Disease etiology and means of control are also reviewed. The objective is to define the present situation of black chaff in wheat, barley and triticale, and to delineate the major research needs in these crops. Difficulties in controlling bacterial leaf streak arise as a result of limited epidemiological knowledge and of the absence of satisfactory seed treatment permitting the eradication of the bacterium. There is an urgent need for a seed certification scheme and for more information on genetic resistance, with a view to limiting outbreaks of this sporadic but devastating disease.  相似文献   
2.
A rapid warming of 2.8–5.3 °C by the end of this century is expected in South Korea. Considering the current temperature during the spring potato growing season (emergence to harvest; ca. 18 °C), which is near the upper limit of the optimum temperature for potato yield, the anticipated warming will adversely affect potato production in South Korea. The present study assessed the impact of high temperature on the marketable tuber yield and related traits of cv. Superior (which makes up 71% of the annual potato production in South Korea) in four temperature-controlled plastic houses and an outdoor field (37.27°N, 126.99°E) during 2015–2016. The target temperatures of the four plastic houses were set to ambient (AT), AT+1.5 °C, AT+3.0 °C, and AT+5.0 °C. The marketable tuber yield was significantly reduced by 11% per 1 °C increase over a temperature range of 19.1–27.7 °C. The negative impact of high temperature was associated not only with the yield loss of total tubers, which was mostly explained by the slower tuber bulking rate, but also the reduced marketable tuber ratio under temperatures above 23 °C, which was mainly attributed to the reduced number of marketable tubers (r = 0.79***). Under moderate temperatures below 23 °C, the source limited the number of marketable tubers without reducing the marketable tuber ratio. In contrast, the number of marketable tubers was limited by the marketable tuber set at the early growth stage rather than the source under the higher temperatures, which resulted in the reduction in the marketable tuber ratio below 56%. These results suggest that the objectives of breeding and agronomic management for adapting to the rapid warming in South Korea should include maintaining the ability to form tubers at the early growth stage under high temperatures, as well as the photosynthetic capacity and sink strength of the tubers.  相似文献   
3.
Meeting demands for increased cereal production in China   总被引:1,自引:0,他引:1  
Meeting demands for increased cereal production in China is a great challenge and this paper provides updated information on cereal production and the potential adaptation of cropping systems to climate change, as well as on progress in improving yield potential and developing molecular markers and GM cereals in China. Maize production and soybean imports are increasing significantly to meet the strong demand for feed by a rapidly growing livestock industry. Extension of the rice and maize growing seasons in northeastern China and improvement of the cropping system through delayed wheat planting have contributed to improving cereal productivity despite changing climatic conditions. Significant improvements in yield potential of rice, maize, and wheat have been achieved. Comparative genomics has been successfully used to develop and validate functional markers for processing quality traits in wheat, and also for developing new varieties. Although transgenic Bt rice and maize, and maize expressing phytase have been developed, their commercialization has not been officially permitted. International collaboration has contributed significantly to cereal production by providing germplasm and improved crop management practices. Full integration of applied molecular technologies into conventional breeding programs and promotion of lower-input technologies, will play a key role in increasing and sustaining future cereal production.  相似文献   
4.
The importance of reduced tillage in sustainable agriculture is well recognized. Reduced-tillage practices (which may or may not involve retention of crop residues) and their effects differ from those of conventional tillage in several ways: soil physical properties; shifts in host–weed competition; soil moisture availability (especially when sowing deeply or under stubble); and the emergence of pathogen populations that survive on crop residues. There may be a need for genotypes suited to special forms of mechanization (e.g. direct seeding into residues) and to agronomic conditions such as allelopathy, as well as specific issues relating to problem soils. This article examines issues and breeding targets for researchers who seek to improve crops for reduced-tillage systems. Most of the examples used pertain to wheat, but we also refer to other crops. Our primary claim is that new breeding initiatives are needed to introgress favourable traits into wheat and other crops in areas where reduced or zero-tillage is being adopted. Key traits include faster emergence, faster decomposition, and the ability to germinate when deep seeded (so that crops compete with weeds and use available moisture more efficiently). Enhancement of resistance to new pathogens and insect pests surviving on crop residues must also be given attention. In addition to focusing on new traits, breeders need to assess germplasm and breeding populations under reduced tillage. Farmer participatory approaches can also enhance the effectiveness of cultivar development and selection in environments where farmers’ links with technology providers are weak. Finally, modern breeding tools may also play a substantial role in future efforts to develop adapted crop genotypes for reduced tillage.  相似文献   
5.
Spring sown bread wheat is grown at high latitudes in Europe, Asia and North America. However, it is not clear what the associations are among environments, particularly in Asia and North America, and whether or not cultivars developed in one region may adapt in another. A yield trial comprised of cultivars developed in northern Kazakhstan, western Siberia, the Canadian Prairies, northern USA, northeastern China and broadly adapted genotypes bred by CIMMYT in Mexico was planted in all the above mentioned environments in 2002–2004. In general, cultivars performed best within the regions they were developed. However, cultivars developed in northern Kazakhstan/western Siberia were the most broadly adapted at high latitudes; they were not significantly different for grain yield from the locally developed cultivars in both China and Canada. Stronger photoperiod response, greater plant height and larger seed weight appeared to be key adaptive features of these materials. At lower latitudes, the Kazakh/Siberian cultivars were significantly lower yielding than all other materials. When low latitude Mexican sites were removed from the analysis, the Chinese locations tended to associate, whereas most Canadian and Kazak/Siberian locations were negatively associated with those from China. SSR analysis of the cultivars from each region split the materials into two general groups, one based on North American cultivars and one comprised of Kazakh/Siberian and Chinese cultivars. Lines developed in Mexico were spread across these two groupings. Evidence suggests that considerable scope exists to improve bread wheat adaptation at high latitudes globally through intercrossing materials originating from Asia and North America.  相似文献   
6.
Nearly 50 percent of the 1988 advanced breeding lines of the CIMMYT bread wheat breeding program possess the 1B/1R homozygous translocation. Hence, a trial was conducted to estimate the effect of 1B/1R chromosome translocation on the yield potential of some of our high-yielding spring wheats, where non-limiting levels of fertility, moisture, preventive pest and disease programs were used. In conclusing the 1B/1R lines seemed to have increased their above-ground biomass yield, number of spikes per meter2, 1000-grain weight and test weight. They also exhibited a slight advantage over the 1B homozygous lines on grain yield. The observed difference, however, was non-significant, as was the plant height difference observed among the two groups. Varietal comparisons indicated that the 1B/1R group headed later than the 1B group.  相似文献   
7.
Yield and adaptation of hexaploid spring triticale   总被引:2,自引:0,他引:2  
Summary Gains in yield and stability were analysed using grain yield data from the 8th to the 14th International Triticale Yield Nursery (ITYN) and differences in adaptation between complete and substituted triticales (X Triticosecale Wittmack) were examined. A trend of improving yield and adaptation was observed. As highly significant genotype × site interaction each year was not adequately described using regression analysis, yield stability was examined by ranking genotypes within sites and summarizing scores for individual genotypes across sites. Cluster analysis was used to study the relationships among sites and among genotypes. There was little evidence of sites grouping on a geographical basis. Grouping of genotypes showed a tendency for complete and substituted triticales to perform differently, suggesting that diversity for adaptation is maximized by utilizing both types in breeding.Progress for grain yield is compared with more spectacular gains in test weight and reasons for the different rates of improvement are postulated.Abbreviations CIMMYT International Maize & Wheat Improvement Centre - ITYN International Triticale Yield Nursery contribution from CIMMYT/Agriculture Canada (No. R-002)  相似文献   
8.
Summary Selection among microgametophytes usually exploits variation in pollen grain germination. Studies of variation in pollen grain size in common bean (Phaseolus vulgaris L.) suggested that selection for size might lead to changes in sporophytic traits. To determine whether microgametophytic selection based on size would affect pollen grain size in subsequent generations or sporophytic traits that were correlated with pollen grain size, pollen grains from three crosses were separated into two size categories by sieving and then used to pollinate cv. Diacol Calima. Selection resulted in changes in pollen grain diameter for pollen from F1, F2 and F3 plants for all crosses. In vitro germination indicated no differences between vigor of large and small grains, but extraction and sieving reduced germinability. F1 seed from two of the crosses with size-selected pollen varied in weight according to pollen grain size, but in subsequent generations, the effect disappeared. Both size categories of selected pollen resulted in F2 progeny with reduced numbers of seeds per pod as compared to controls, suggesting that the size selection process may have resulted in indirect selection for traits reducing seed set. The overall results suggested that genes determining pollen grain size in bean have little or no effect on sporophytic traits such as seed size and seed yield.  相似文献   
9.
Fifty-five spring bread wheat (Triticum aestivum L.) cultivars, mostly released between 1975 and 1991 in eight leaf rust-prone spring wheat growing regions of the former USSR, were tested in the seedling growth stage for reaction to 15 Mexican pathotypes of Puccinia recondita f. sp. tritici. In total, seven known and at least two unknown genes were identified, either singly or in combinations: Lr3 (7 cultivars), Lr10 (14), Lr13 (5), Lr14a (1), Lr16 (1), Lr23 (3); the unknown genes were identified in 14 cultivars. The first unknown gene could be either Lr9, Lr19, or Lr25; however, the second unknown gene in 9 cultivars was different from any named gene. Twelve of the 15 pathotypes are virulent for this gene, hence its use in breeding for resistance will be limited. The cultivars were also evaluated at two field locations in Mexico with two pathotypes in separate experiments. The area under the disease progress curve and the final disease rating of the cultivars indicated genetic diversity for genes conferring adult plant resistance. based on the symptoms of the leaf tip necrosis in adult plants, resistance gene Lr34 could be present in at least 20 cultivars. More than half of the cultivars carry high to moderate levels of adult plant resistance and were distributed in each region.  相似文献   
10.
Improving the level and stability of grain yield is the primary objective of wheat breeding programs in the Eastern Gangetic Plains (EGP) of South Asia. A regional wheat trial, the Eastern Gangetic Plains Yield Trial (EGPYT), was initiated by CIMMYT in collaboration with national wheat research programs in Bangladesh, Nepal, and India in 1999–2000 to identify wheat genotypes with high and stable grain yield, disease resistance, and superior agronomic traits for the EGP region. A set of 21 wheat experimental genotypes selected from a regional wheat screening nursery in South Asia, three improved widely grown cultivars (Kanchan, PBW343 and Bhrikuti), and one long-term cultivar (Sonalika) were tested at 9–11 sites in six wheat growing seasons (2000–2005) in the EGP. The 21 experimental genotypes were different in each year, whereas the four check cultivars were common. In each year, one or more of the experimental genotypes showed high and stable grain yield and acceptable maturity, plant height, and disease resistance compared to the check cultivars. Three improved cultivars have already been commercially released in the region through EGPYT and many germplasm lines have been used in the breeding programs as parents. Identification of wheat genotypes with high-grain yield in individual sites and high and stable yield across the EGP region underlines their value for regional wheat breeding programs attempting to improve grain yield and agronomic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号