首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   1篇
林业   1篇
农学   1篇
基础科学   2篇
  17篇
综合类   8篇
农作物   4篇
水产渔业   3篇
畜牧兽医   18篇
园艺   1篇
植物保护   5篇
  2023年   2篇
  2022年   5篇
  2021年   1篇
  2020年   8篇
  2019年   1篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2014年   5篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1988年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有60条查询结果,搜索用时 187 毫秒
51.
The objective of this study was to investigate the effects of different growth factors on the proliferation of Bama mini‐pig spermatogonial stem cells (SSCs) in vitro. The growth factors glial cell line‐derived neurotrophic factor (GDNF), leukaemia inhibitory factor (LIF), GDNF family receptor alpha‐1 (GFRα1) and basic fibroblast growth factor (bFGF) were investigated. The SSCs were seeded on SIM mouse embryo‐derived thioguanine‐ and ouabain‐resistant (STO) feeder layers. Cultivation of the cells were subjected to a factorial design of the growth factors GDNF + bFGF, GDNF + bFGF + GFRα1, LIF + bFGF and LIF + bFGF + GFRα1. The SSCs could propagate for 25 passages in the medium adding GDNF + bFGF + GFRα1, 22 passages in the medium adding GDNF + bFGF, 6 passages in the medium adding LIF + bFGF, or LIF + bFGF + GFRα1. qRT‐PCR analysis showed that the highest mRNA expression levels of NANOG, POU5F, DDX4, GFRα1 and UCHL1 were detected in the group adding GDNF + bFGF + GFRα1. The SSCs from the group adding GDNF + bFGF + GFRα1 also showed UCHL1‐, DBA‐ and CDH1‐positive staining. Moreover, Stra8 and Scp3 expression, and haploid peak were detected after induction of the SSCs from the group adding GDNF + bFGF + GFRα1. In conclusion, pig SSCs could be maintained for long term in the presence of GDNF, bFGF, and GFRα1.  相似文献   
52.
A limited seroepidemiological investigation was conducted in Aceh Province to determine the seroprevalence of Anaplasma marginale and Trypanosoma evansi in indigenous cattle and in groups of Sahiwal cross cattle imported from New Zealand in 1985. The results obtained suggest that these parasites are endemic in the areas surveyed; in local cattle, overall prevalence rates of 82% for A. marginale and 61% for T. evansi were obtained.

Thin blood smears were prepared from 42 anaemic adult cattle and 19 clinically normal calves. Babesia bigemina was detected in 5 blood smears and Theileria orientalis in 51. Sahiwal cattle imported from New Zealand suffered high mortalities during their first year in Aceh and it is suggested that imported naive cattle rapidly become infected with blood parasites.  相似文献   

53.
Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrilfuvents) in D. I. Khan, Pakistan, to explore the impact of six tillage methods (zero tillage straw retained (ZTsr), ZT straw burnt (ZTsb), reduced tillage straw incorporated (RTsi, including tiller and rotavator), RT straw burnt (RTsb), conventional tillage straw incorporated (CTsi, including disc plow, tiller, rotavator, and leveling operations), CT straw burnt (CTsb)) and ifve nitrogen rates, i.e., 0, 100, 150, 200, and 250 kg ha-1 on wheat yield. Mean values for N revealed that spikes m-2, grains/spike, 1 000-grain weight (g), and grain yield (kg ha-1) were signiifcantly higher at 200 kg N ha-1 in both the years as well as mean over years than all other treatments. Mean values for tillage revealed that ZTsr produced highest number of spikes m-2 among tillage methods. However, grains/spike, 1 000-grain weight, and grain yield were higher in tillage methods with either straw retained/incorporated than tillage methods with straw burnt. Interaction effects were signiifcant in year 1 and in mean over years regarding spikes m-2, 1 000-grain weight, total soil organic matter (SOM), and total soil N (TSN). ZTsr produced the most spikes m-2 and 1 000-grain weight at 200 kg N ha-1. ZTsr also produced higher SOM and TSN at 200-250 kg N ha-1 at the end of 2 yr cropping. Thus ZTsr with 200 kg N ha-1 may be an optimum and sustainable approach to enhance wheat yield and soil quality in rice-wheat system.  相似文献   
54.
A ifeld experiment was conducted to study the impact of tillage, crop residue management and nitrogen (N) splitting on spring wheat (Triticum aestivum L.) yield over 2 yr (2010-2012) in a rice (Oryza sativa L.)-wheat system in northwestern Pakistan. The experiment was conducted as split plot arranged in randomized complete blocks design with three replications. Treatments comprised six tillage and residue managements:zero tillage straw retained (ZTsr), zero tillage straw burnt (ZTsb), reduced tillage straw incorporated (RTsi), reduced tillage straw burnt (RTsb), conventional tillage straw incorporated (CTsi), and conventional tillage straw burnt (CTsb) as main plots and N (200 kg ha-1) was applied as split form viz., control (no nitrogen&no splitting, N0S0);2 splits of total N, half at sowing and half at the 1st irrigation (i.e., 20 d after sowing (DAS)) (NS1);3 splits of total N, 1/3 at sowing, 1/3 at the 1st irrigation, and 1/3 at the 2nd irrigation (NS2);4 splits of total N, 1/4 at sowing, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation (45 DAS), and 1/4 at the 3rd irrigation (70 DAS) (NS3);and 4 splits of total N, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation, 1/4 at the 3rd irrigation, and 1/4 at the 4th irrigation (95DAS) (NS4) as sub plots. The results showed that the most pikes m-2, grains/spike, 1 000-grain weight, grain yield, and N use efifciency (NUE) were obtained at zero tillage, straw retained and 4 splits application of total N (i.e., at sowing 20, 45 and 70 d after sowing). The results indicated that ZTsr with application of 200 kg N ha-1 in 4 equal splits viz. at sowing 20, 45 and 70 d after sowing is an appropriate strategy that enhanced wheat yield (7 436-7 634 kg ha-1) and N efifciency (28.6-29.5 kg kg-1) in rice-wheat system.  相似文献   
55.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   
56.
Woody biochars derived by pyrolyzing Gliricidia sepium at 300°C and 500°C and a waste byproduct of same biomass from a bioenergy industry (BC700) were tested for their effect on soil enzymes activities and available form of heavy metals in multi-metals contaminated soil. Pot experiments were conducted during 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates, 1, 2.5, and 5% (w/w). A reduction in polyphenol oxidase with biochars produced at increasing pyrolysis temperature compared to the control whereas the maximum activity of dehydrogenase and catalase was observed in 1% BC500 and 2.5% BC300, respectively. Soil available form of Ni, Mn, and Cr were reduced by 55, 70% and 80% in 5% BC700 amended soil, respectively. The highest geometric mean of enzyme activities was observed in 2.5% BC300 treatment. Overall the application of high dosages of high temperature derived biochar masks/deteriorates soil enzyme activities but immobilizes bioavailable heavy metals and reduces toxicity.  相似文献   
57.
In this work, activated carbon (AC) web was prepared using physical activation under the layer of charcoal in high temperature furnace. The carbonization of acrylic fibrous waste was performed at different temperatures (800 °C, 1000 °C, and 1200 °C) with heating rate of 300 °C/h and at different holding time. At 1200 °C, the heating rate of 300 °C/h and no holding time provided better results of surface area as compared to carbonization at 800 °C and 1000 °C. The activated carbon web (AC) prepared at 1200 °C was used for removal of Acid Red 27 dye from aqueous media by varying different parameters like initial concentration of dye, stirring speed, adsorbent dosage, and pH. The results were evaluated using non-linear forms of Langmuir and Freundlich isotherms. The Freundlich isotherm was found to describe the results more effectively because of non-homogenous surface of activated carbon web. Further, the kinetics of adsorption was examined using linear and nonlinear forms of pseudo 1st order and pseudo 2nd order.  相似文献   
58.

Purpose

This study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).

Materials and methods

The TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.

Results and discussion

The total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.

Conclusions

Pore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants.
  相似文献   
59.
A laboratory column experiment was conducted to investigate the effects of 400°C biochar at application rate of 15 g kg?1 (21.9 t ha?1) with different particle sizes (<0.5 mm (S1), 0.5–1 mm (S2) and 1–2 mm (S3)) and application depths (0–2 cm depth (D0), 4–6 cm depth (D5) and 8–10 cm depth (D10)) on hydro-physical properties of sandy loam soil. The results indicated that applying biochar decreased the waterfront and saturated hydraulic conductivity of sandy loam soil. The cumulative evaporation was the highest and amounted to 40.9 mm in the non-treated soil, but it recorded the lowest amount of 32.2–35.5 mm in the biochar-treated soil. Applying biochar caused significant increases in the amount of conserved and retained water with the highest amount of water conserved in soil treated with S2 biochar at D5. Moreover, the cumulative water infiltration through the soil was significantly reduced by S1 and S2 biochars at D0. The values of saturated hydraulic conductivity for biochar treatments were significantly lower than those for the control, with the lowest values for S1 at D0 and D5. These results suggest positive improvement for the hydro-properties of coarse-textured soils following biochar addition, especially with finer particles of biochar.  相似文献   
60.
Journal of Soils and Sediments - Tannery waste–contaminated soil has a high amount of several toxic chemicals and heavy metals including chromium (Cr), which makes it unsuitable for...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号