首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1142篇
  免费   70篇
  国内免费   1篇
林业   87篇
农学   30篇
基础科学   6篇
  224篇
综合类   205篇
农作物   32篇
水产渔业   100篇
畜牧兽医   429篇
园艺   33篇
植物保护   67篇
  2024年   2篇
  2023年   6篇
  2022年   8篇
  2021年   18篇
  2020年   32篇
  2019年   24篇
  2018年   29篇
  2017年   25篇
  2016年   29篇
  2015年   23篇
  2014年   38篇
  2013年   58篇
  2012年   73篇
  2011年   111篇
  2010年   59篇
  2009年   43篇
  2008年   79篇
  2007年   79篇
  2006年   78篇
  2005年   66篇
  2004年   59篇
  2003年   64篇
  2002年   57篇
  2001年   9篇
  2000年   7篇
  1999年   16篇
  1998年   18篇
  1997年   9篇
  1996年   5篇
  1995年   6篇
  1994年   9篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有1213条查询结果,搜索用时 500 毫秒
61.
Chickpea (Cicer arietinum L.) is known to be salt-sensitive and in many regions of the world its yields are restricted by salinity. Recent identification of large variation in chickpea yield under salinity, if genetically controlled, offers an opportunity to develop cultivars with improved salt tolerance. Two chickpea land races, ICC 6263 (salt sensitive) and ICC 1431 (salt tolerant), were inter-crossed to study gene action involved in different agronomic traits under saline and control conditions. The generation mean analysis in six populations, viz. P1, P2, F1, F2, BC1P1 and BC1P2, revealed significant gene interactions for days to flowering, days to maturity, and stem Na and K concentrations in control and saline treatments, as well as for 100-seed weight under salinity. Seed yield, pods per plant, seeds per plant, and stem Cl concentration were controlled by additive effects under saline conditions. Broad-sense heritability values (>0.5) for most traits were generally higher in saline than in control conditions, whereas the narrow-sense heritability values for yield traits, and stem Na and K concentrations, were lower in saline than control conditions. The influence of the sensitive parent was higher on the expression of different traits; the additive and dominant genes acted in opposite directions which led to lower heritability estimates in early generations. These results indicate that selection for yield under salinity would be more effective in later filial generations after gene fixation.  相似文献   
62.
Water consumed through evapotranspiration (ET) impacts local and regional hydrologic regimes on various spatial and temporal scales. Estimating ET in the Great Plains is a prerequisite for effective regional water resource management of the Ogallala (High Plains) Aquifer, which supplies vital water resources in the form of irrigation for extensive agricultural production. The Sand Hills region of Nebraska is one of the largest grass-stabilized eolian (windblown) sand dune formations in the world, with an area of roughly 50,000–60,000 km2 that supports a system of five major land cover types: (1) lakes, (2) wetlands (with lakes, ~5%), (3) subirrigated meadows (water table is within ~1 m of surface; ~10%), (4) dry valleys (water table is 1–10 m below surface; ~20%), and (5) upland dunes (water table is more than 10 m below surface; ~65%). Fully understanding the hydrologic regime of these different ecosystems is a fundamental challenge in regional water resource assessment. The surface energy and water balances were analyzed using Bowen Ratio Energy Balance Systems (BREBS) at three locations: (1) a meadow, (2) a valley, and (3) an upland dune. Measurement of the energy budget by BREBS, in concert with Landsat remote sensing image processing for 2004 reveals strong spatial gradients between sites in latent heat flux that are associated with undulating topographic relief. We find that daily estimates of ET from BREBS measurements and remote sensing agree well, with an uncertainty within 1 mm, which is encouraging when applying remote sensing results across such a broad spatial scale and undulating topography.  相似文献   
63.
The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.  相似文献   
64.
The essential Cdc13 protein in the yeast Saccharomyces cerevisiae is a single-stranded telomeric DNA binding protein required for chromosome end protection and telomere replication. Here we report the solution structure of the Cdc13 DNA binding domain in complex with telomeric DNA. The structure reveals the use of a single OB (oligonucleotide/oligosaccharide binding) fold augmented by an unusually large loop for DNA recognition. This OB fold is structurally similar to OB folds found in the ciliated protozoan telomere end-binding protein, although no sequence similarity is apparent between them. The common usage of an OB fold for telomeric DNA interaction demonstrates conservation of end-protection mechanisms among eukaryotes.  相似文献   
65.
Multimillion-atom molecular-dynamics simulations are used to investigate the shock-induced phase transformation of solid iron. Above a critical shock strength, many small close-packed grains nucleate in the shock-compressed body-centered cubic crystal growing on a picosecond time scale to form larger, energetically favored grains. A split two-wave shock structure is observed immediately above this threshold, with an elastic precursor ahead of the lagging transformation wave. For even higher shock strengths, a single, overdriven wave is obtained. The dynamics and orientation of the developing close-packed grains depend on the shock strength and especially on the crystallographic shock direction. Orientational relations between the unshocked and shocked regions are similar to those found for the temperature-driven martensitic transformation in iron and its alloys.  相似文献   
66.
Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.  相似文献   
67.
Maintenance of genomic methylation patterns is mediated primarily by DNA methyltransferase-1 (DNMT1). We have solved structures of mouse and human DNMT1 composed of CXXC, tandem bromo-adjacent homology (BAH1/2), and methyltransferase domains bound to DNA-containing unmethylated CpG sites. The CXXC specifically binds to unmethylated CpG dinucleotide and positions the CXXC-BAH1 linker between the DNA and the active site of DNMT1, preventing de novo methylation. In addition, a loop projecting from BAH2 interacts with the target recognition domain (TRD) of the methyltransferase, stabilizing the TRD in a retracted position and preventing it from inserting into the DNA major groove. Our studies identify an autoinhibitory mechanism, in which unmethylated CpG dinucleotides are occluded from the active site to ensure that only hemimethylated CpG dinucleotides undergo methylation.  相似文献   
68.
Members of the DExH/D superfamily of nucleic acid-activated nucleotide triphosphatases are essential for virtually all aspects of RNA metabolism, including pre-messenger RNA splicing, RNA interference, translation, and nucleocytoplasmic trafficking. Physiological substrates for these enzymes are thought to be regions of double-stranded RNA, because several DExH/D proteins catalyze strand separation in vitro. These "RNA helicases" can also disrupt RNA-protein interactions, but it is unclear whether this activity is coupled to duplex unwinding. Here we demonstrate that two unrelated DExH/D proteins catalyze protein displacement independently of duplex unwinding. Therefore, the essential functions of DExH/D proteins are not confined to RNA duplexes but can be exerted on a wide range of ribonucleoprotein substrates.  相似文献   
69.
At geological time scales, the role of continental erosion in the organic carbon (OC) cycle is determined by the balance between recent OC burial and petrogenic OC oxidation. Evaluating its net effect on the concentration of carbon dioxide and dioxygen in the atmosphere requires the fate of petrogenic OC to be assessed. Here, we report a multiscale (nanometer to micrometer) structural characterization of petrogenic OC in the Himalayan system. We show that graphitic carbon is preserved and buried in marine sediments, while the less graphitized forms are oxidized during fluvial transport. Radiocarbon dating indicates that 30 to 50% of the carbon initially present in the Himalayan rocks is conserved during the erosion cycle. Graphitization during metamorphism thus stabilizes carbon in the crust over geological time scales.  相似文献   
70.
Most prior studies have found that substituting biofuels for gasoline will reduce greenhouse gases because biofuels sequester carbon through the growth of the feedstock. These analyses have failed to count the carbon emissions that occur as farmers worldwide respond to higher prices and convert forest and grassland to new cropland to replace the grain (or cropland) diverted to biofuels. By using a worldwide agricultural model to estimate emissions from land-use change, we found that corn-based ethanol, instead of producing a 20% savings, nearly doubles greenhouse emissions over 30 years and increases greenhouse gases for 167 years. Biofuels from switchgrass, if grown on U.S. corn lands, increase emissions by 50%. This result raises concerns about large biofuel mandates and highlights the value of using waste products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号