首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
林业   4篇
农学   5篇
  14篇
综合类   5篇
农作物   5篇
水产渔业   6篇
畜牧兽医   11篇
园艺   2篇
植物保护   15篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有67条查询结果,搜索用时 312 毫秒
41.
42.
International Aquatic Research - In the current study, ten elements contents (Fe, Zn, Mn, Cu, Cr, Co, Ni, Cd, Pb and Hg) have been measured in muscle and liver of four pelagic fish species...  相似文献   
43.
Indicators of plant nitrogen (N) status adapted to woody ornamental plants are essential for the adjustment of fertilization practices in nurseries. The objective of this study was to investigate whether optical measurements of leaf epidermal polyphenol (EPhen) and chlorophyll (Chl) contents could be used as N status indicators for woody deciduous and evergreen ornamental plants. One-year-old plants of Lagerstroemia indica, Callicarpa bodinieri and Viburnum tinus were grown outdoors in containers. They received low (TN1, 4 mg L−1) or high (TN2, 105 mg L−1) levels of N during 2 months in spring and summer. TN1 treatment limited shoot growth from 28 to 37 days after treatment initiation in Lagerstroemia and Callicarpa, respectively. Shoot growth was unaffected until day 176 in Viburnum. The mass-based leaf N content (NM) of a sample of young expanded leaves exposed to direct sunlight was tightly correlated with shoot N content and differentiated treatments several weeks before shoot growth reduction for the three species. NM was therefore used as an index of plant N status. EPhen and Chl contents were recorded with Dualex™ and SPAD-502 leaf-clip meters, respectively. Dualex values were strongly and negatively correlated with NM, and differentiated the treatments early in the experiment, in all three species. SPAD values were positively correlated with NM for Lagerstroemia and Callicarpa, but not for Viburnum, because large variations in leaf mass per area (LMA) in this species compensated for variations in leaf dry mass invested in Chl. The SPAD/Dualex ratio was used to assess changes in the proportion of leaf dry mass allocated to proteins and polyphenols in response to fertilization. It differentiated between the treatments early in the experiment and was correlated with NM in all three species.  相似文献   
44.
Tropical Animal Health and Production - Although T. gondii is of considerable both public and veterinary importance worldwide, studies on its existence in sheep in Algeria, either through serology...  相似文献   
45.
From 1998 to 2011, the effects of environmental conditions on the spatial and temporal trends of sardine and sardinella catch rates in the Mauritanian waters were investigated using generalized additive models. Two models were used: a global model and an oceanographic model. The global models explained more of the variability in catch rates (60.4% for sardine and 40% for sardinella) than the oceanographic models (42% for sardine and 32.4% for sardinella). Both species showed clear and inverse seasonal variations in abundances corresponding to their main spawning activities and the hydrologic seasons off the Mauritanian waters. Sardine prefer colder waters and seem to occupy the ‘gap’ in the northern part of the Mauritanian waters as soon as sardinella has left the area because of to lower water temperatures. Unlike sardinella, sardine showed a gradual southward extension between 2002 and 2009. The oceanographic model revealed that a high proportion of catch variability for the two species could be explained by environmental variables. The main environmental parameters explaining the variability are sea surface temperature (SST) and the upwelling index for sardinella, and the chlorophyll‐a (Chl‐a) concentration, the upwelling index and SST for sardine. The sardinella spatio‐temporal variations off Mauritania seem to be more controlled by thermal than productivity gradients, probably linked to the species physiological constraints (thermal tolerance) whereas sardine seems to be more controlled by an ‘optimal upwelling and temperature’ windows. The results presented herein may be useful for understanding the movement of these species along the Mauritanian coast and hence their management under a changing climate.  相似文献   
46.
The Interaction between the effects of nitrate (NO3) and sodium chloride (NaCl) concentration on growth) water relations, nitrogen (N) contents and N fixation were investigated in alfalfa (Medicago sativa L. cv. Magali). The plants were grown hydroponically in a growth chamber, in the presence or absence of 3 mM potassium nitrate (KNO3) and exposed to various concentrations of NaCl. Increased salinity resulted in a significant decrease in shoot and root biomass, relative water content and water potential. Shoot growth was more inhibited by NaCl than root biomass. The plants grown in the presence of NO3 were slightly less affected by NaCl than the plants dependent on N fixation for their N nutrition. Nitrogenase activity measured by acetylene reduction activity was substantially inhibited by NaCl, and this inhibition was significantly correlated to the inhibition of shoot growth and total N contents. The comparison of the curves of ARA response to oxygen (O2) partial pressure showed that the salt‐induced inhibition of nitrogenase activity was associated with a significant increase in the critical O2 pressure of the nodules exposed to NaCl. This result shows that NaCl decreases the nodule permeability to O2 diffusion in undeterminate nodule of alfalfa, like previously shown with determinate nodules of soybean.  相似文献   
47.
Rosebush architecture resulting from the spatial organisation of the plant axes induces plant shape and consequently within ornamental horticulture context, its visual quality and commercial value. This architecture can be modulated by environmental conditions, particularly in the horticulture context in which the possibilities to control growing conditions are numerous. The objectives of the study were to determine, in young rose bushes, (1) whether short periods of nitrogen deficiency affect branching and (2) whether this effect is sufficient to modify the visual quality of the plant in a sustainable manner. Between vegetative bud burst and the petal colour visible stage of the generated primary branch, young rooted cuttings of bush rose (cv Radrazz) were subjected to one of three nitrogen regimes: (1) no nitrogen deficiency, (2) continuous nitrogen deficiency, i.e. 35 days of N deficiency, and (3) nitrogen deficiency restricted to the flowering stages, i.e. 18 days of N deficiency. After the petal colour visible stage, all three groups of plants were supplied continuously with nitrogen. We observed the morphology of the axes and the kinetics of axillary bud burst. Twelve weeks after the petal colour visible stage, the visual quality of the rose bushes was evaluated by an expert jury. We found that nitrogen deficiencies (1) increased bud burst ratios in the medial and basal zones of the primary branch, (2) delayed the bud burst in the apical zone of the primary branch and (3) had long-term effects on plant visual quality. The continuous nitrogen deficiency regime produced flatter, more asymmetric and less vigorous rose bushes than the no nitrogen deficiency regime. By contrast, nitrogen deficiency during the flowering stages only resulted in more symmetric, taller and more vigorous rose bushes than the no nitrogen deficiency regime. Based on these results, the role of nitrogen on bud burst was discussed and candidate processes at the origin of the visual quality modification were suggested. This new approach combining ecophysiology and sensory assessment of ornamental plants enabled the identification of some early architecture components to be correlated with later visual quality characteristics and then to better target the physiological processes of interest.  相似文献   
48.
Crop tolerance to salinity is of high importance due to the extent and the constant increase in salt-affected areas in arid and semi-arid regions. Pearl millet (Pennistum glaucum), generally considered as fairly tolerant to salinity, could be an alternative crop option for salt affected areas. To explore the genotypic variability of vegetative-stage salinity tolerance, 100 pearl millet lines from ICRISAT breeding programs were first screened in a pot culture containing Alfisol with 250 mM NaCl solution as basal application. Subsequently, 31 lines including many parents of commercial hybrids, selected from the first trial were re-tested for confirmation of the initial salinity responses. Substantial variation for salinity tolerance was found on the basis of shoot biomass ratio (shoot biomass under salinity/ non-saline control) and 22 lines with a wide range of tolerance varying from highly tolerant to sensitive entries were identified. The performance of the genotypes was largely consistent across experiments. In a separate seed germination and seedling growth study, the seed germination was found to be adversely affected (more than 70% decrease) in more than half of the genotypes with 250 mM concentration of NaCl. The root growth ratio (root growth under salinity/control) as well as shoot growth ratio was measured at 6 DAS and this did not reflect the whole plant performance at 39 DAS. In general, the whole plant salinity tolerance was associated with reduced shoot N content, increased K+ and Na+ contents. The K+/Na+ and Ca++/Na+ ratios were also positively related to the tolerance but not as closely as the Na+ content. Therefore, it is concluded that a large scope exists for improving salt tolerance in pearl millet and that shoot Na+ concentration could be considered as a potential non-destructive selection criterion for vegetative-stage screening. The usefulness of this criterion for salinity response with respect to grain and stover yield remains to be investigated.  相似文献   
49.
The gene coding for green fluorescent protein (GFP) from the jellyfish Aequorea victoria was successfully used as a vital marker for the transformation of three woody plant species, black spruce (Picea mariana (Mill.) BSP), white pine (Pinus strobus L.) and poplar (Populus spp.). The gfp gene and the gene conferring resistance to kanamycin (nptII) were introduced by microprojectile bombardment or Agrobacterium tumefaciens-mediated technology. Screening by fluorescence microscopy of the transformed plant material, under the selection of kanamycin, identified five to eight cell lines from each tree species that clearly expressed GFP. Expression of GFP was observed in somatic embryonal cells of the coniferous species and in stem sections of poplar. For all species, GFP transgene expression was stable over multiple subcultures. Stable integration of the gfp gene into plant genomes was confirmed by Southern hybridization or polymerase chain reaction (PCR) analysis. We conclude that GFP can be used as a vital marker and reporter protein in transformation experiments with gymnosperms and deciduous trees.  相似文献   
50.
Wheat production in Morocco is constrained by both scarce climate and degraded soil quality. There is an urgent need to revert production decline while restoring country’s soils. Among conservation tillage systems known for their improvement in yield, no-till technology was found to influence soil quality as well. Soil quality indices are also affected by wheat rotations at medium and long-terms. This paper discusses changes in selected properties of a Calcixeroll soil, including total and particulate soil organic matter (SOM), pH, total N and aggregation, subjected, for 11 consecutive years, to various conservation and conventional agricultural systems. Tillage systems included no-tillage (NT) and conventional tillage (CT). Crop rotations were continuous wheat, fallow–wheat, fallow–wheat–corn, fallow–wheat–forage and fallow–wheat–lentils. Higher aggregation, carbon sequestration, pH decline and particulate organic matter (POM) buildup are major changes associated with shift from conventional- to NT system. Better stability of aggregates was demonstrated by a significantly greater mean weight diameter under NT (3.8 mm) than CT system (3.2 mm) at the soil surface. There was 13.6% SOC increase in (0–200 mm) over the 11-year period under NT, while CT did not affect much this soil quality indicator. Another valuable funding is the stratification of SOC and total nitrogen in NT surface horizon (0–25 mm) without their depletion at deeper horizon compared to tillage treatments. Fallow–wheat system resulted in reduction of SOC compared to WW, but 3-year wheat rotation tended to improve overall soil quality. Benefits from crop rotation in terms of organic carbon varied between 2.6 and 11.7%, with fallow–wheat–forage exhibiting the maximum. Combined use of NT and 3-year fallow rotation helped to improve soil quality in this experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号