首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   12篇
林业   3篇
农学   4篇
基础科学   3篇
  47篇
综合类   17篇
农作物   14篇
水产渔业   21篇
畜牧兽医   98篇
园艺   5篇
植物保护   15篇
  2023年   1篇
  2021年   8篇
  2020年   4篇
  2019年   14篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   14篇
  2011年   17篇
  2010年   10篇
  2009年   9篇
  2008年   18篇
  2007年   16篇
  2006年   17篇
  2005年   11篇
  2004年   9篇
  2003年   10篇
  2002年   7篇
  2001年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
31.
32.
Zoonotic viruses, such as H5N1 Avian Influenza, pose major threats to both animals and humans, and with this in mind there is a need for the development of new anti-viral strategies. The cytokine interleukin-12 (IL-12) is known to play a pivotal regulatory role in the anti-viral response due to its role in the induction of the key anti-viral cytokine IFN-gamma. Therefore, strategies which provide a means for the production of therapeutic quantities of IL-12 may be of major benefit. Here we describe the development of biologically active Escherichia coli (E. coli) derived chicken IL-12 (ChIL-12). The single chain ChIL-12 gene was cloned into the pET32b expression vector, transformed into the BL-21 E. coli strain and expression induced with IPTG. Over expressed protein was solubilised with zwittergent detergent and isolated utilising Nickel ion affinity chromatography. Biological activity was determined as ChIL-12 stimulated proliferation of pre-treated T-cells in vitro. This study is the first example of a biologically active E. coli derived IL-12 from a non-mammalian vertebrate subsequently providing a means for testing the anti-viral therapeutic potential of ChIL-12 in an in vivo model.  相似文献   
33.
The island of Crete (Greece) suffers from an increasingly severe water shortages, coupled with declining groundwater supplies. We compared the costs and benefits of alternative strategies for treating wastewater for use in irrigating vegetables: (1) using a membrane bioreactor (MBR), (2) connecting new residences to centralized wastewater-treatment plants, (3) building new wastewater-treatment plants, and (4) using natural wastewater-treatment systems in rural areas. We also examined the impact of increasing water scarcity on the net benefits of treating wastewater with an MBR. As expected, the value of treated wastewater increases with increasing water scarcity. The net benefit of treating wastewater with an MBR and using the reclaimed water to irrigate vegetables ranges from about 0.02 €/m3 to 2 €/m3 as water scarcity increases. Our results should be helpful in guiding analysts in Greece and other arid countries wishing to evaluate the financial viability of alternative methods of treating wastewater for use in agriculture.  相似文献   
34.
The subcutaneous (SC) route is often chosen for drug administration in cats because it is easier to perform than intravenous (IV) injection and is perceived as less painful than intramuscular (IM) injection. However, little is known of how the route of administration influences the pharmacodynamics of drugs. This study measured the changes in skin temperature and thermal threshold (TT) and recorded the side-effects after SC injection of 0.1mg/kg of hydromorphone in six cats. Time to peak TT was 105min. Skin temperature was elevated at 15min and between 45 and 360min. Five cats vomited and two exhibited marked dysphoria. Compared to previously published studies of IV and IM administration of hydromorphone, the SC route results in a slower onset of peak effect, a shorter duration of antinociception and is associated with more undesirable side-effects. As with IV and IM injections, SC administration of hydromorphone at 0.1mg/kg is associated with a significant elevation in skin temperature. Overall, the SC route appears to have the least utility.  相似文献   
35.
36.
Members of the euryarchaeotal genera Methanolobus and Halobacterium as well as group 1.1c Crenarchaeota were enriched from ectomycorrhizal samples and cultured under anaerobic conditions. 16S rRNA gene sequences of Methanolobus were obtained in a H2 + CO2 atmosphere and autofluorescent putatively methanogenic microbial cells were detected by epifluorescence microscopy of the anaerobic methane-producing enrichment cultures. Halobacterium and group 1.1c Crenarchaeota grew anaerobically when either H2 or CH4 was added to the atmosphere. Group 1.1c Crenarchaeota were also enriched under aerobic conditions on mineral media, but only when methane or methanol was added as carbon sources. The 16S rRNA gene sequences of 1.1c Crenarchaeota grown under both anaerobic and aerobic conditions were highly similar. Our study demonstrates the growth of group 1.1c Crenarchaeota and Halobacteria derived from non-extreme soil environment in non-saline enrichments under anaerobic conditions. The results suggest that 1.1c Crenarchaeota may play a role in the cycling of C-1 substrates in the boreal forest soil ecosystem.  相似文献   
37.
38.
Mucous cell size and distribution were investigated in the skin of five salmon using a novel stereology‐based methodology: one (48 cm) fish to test 15 tissue treatment combinations on measures of cell area and density on the dorsolateral region and, using the most suitable treatment, we mapped mucous cell differences between body regions on four (52 cm) salmon, comprising a male and a female on each of two diets. The section site, decalcification, embedding medium and plane of sectioning all impacted significantly on mucous cell size, whereas mucous cell density is more robust. There were highly significant differences in both mucosal density and mean mucous cell size depending on body site: the dorsolateral skin of the four salmon had significantly denser (about 8% of skin area) and larger (mean about 160 μm2) mucous cells, whereas the lowest mean density (about 4%) and smallest mean area (115 μm2) were found on the head. We found that 100 random measurements may be sufficient to distinguish differences >7 μm2 in mean mucous cell areas. The results further suggest that salmon exhibit a dynamic repeatable pattern of mucous cell development influenced by sex, diet and possibly strain and season.  相似文献   
39.
Soil salinization may negatively affect microbial processes related to carbon dioxide(CO_2) and nitrous oxide(N_2O) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity(EC) and moisture content on CO_2 and N_2O emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0–15 and 15–30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space(WFPS) at 25?C. The measured depth-weighted EC of the saturated paste extract(EC_e) across the sampling positions ranged from 0.43 to 4.65 dS m~(-1). Potential nitrogen(N) mineralization rate and CO_2 emissions decreased with increasing soil EC_e, but the relative decline in soil CO_2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N_2O emissions decreased from 133 μg N_2O-N kg~(-1) soil at EC_e 0.50 dS m~(-1) to 72 μg N_2O-N kg~(-1) soil at EC_e = 4.65 dS m~(-1). In contrast, at 90% WFPS,soil N_2O emissions increased from 262 μg N_2O-N kg~(-1) soil at EC_e = 0.81 dS m~(-1) to 849 μg N_2O-N kg~(-1) soil at EC_e = 4.65 dS m~(-1), suggesting that N_2O emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil EC_e and pattern of rainfall over the season need to be considered when up-scaling N_2O and CO_2 emissions from field to landscape scales.  相似文献   
40.
The impact of rising atmospheric carbon dioxide (CO2) may be mitigated, in part, by enhanced rates of net primary production and greater C storage in plant biomass and soil organic matter (SOM). However, C sequestration in forest soils may be offset by other environmental changes such as increasing tropospheric ozone (O3) or vary based on species-specific growth responses to elevated CO2. To understand how projected increases in atmospheric CO2 and O3 alter SOM formation, we used physical fractionation to characterize soil C and N at the Rhinelander Free Air CO2-O3 Enrichment (FACE) experiment. Tracer amounts of 15NH4+ were applied to the forest floor of Populus tremuloides, P. tremuloides-Betula papyrifera and P. tremuloides-Acer saccharum communities exposed to factorial CO2 and O3 treatments. The 15N tracer and strongly depleted 13C-CO2 were traced into SOM fractions over four years. Over time, C and N increased in coarse particulate organic matter (cPOM) and decreased in mineral-associated organic matter (MAOM) under elevated CO2 relative to ambient CO2. As main effects, neither CO2 nor O3 significantly altered 15N recovery in SOM. Elevated CO2 significantly increased new C in all SOM fractions, and significantly decreased old C in fine POM (fPOM) and MAOM over the duration of our study. Overall, our observations indicate that elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Elevated O3 had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号