首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   921篇
  免费   44篇
  国内免费   4篇
林业   38篇
农学   19篇
基础科学   1篇
  177篇
综合类   98篇
农作物   28篇
水产渔业   68篇
畜牧兽医   472篇
园艺   24篇
植物保护   44篇
  2023年   5篇
  2022年   6篇
  2021年   14篇
  2020年   30篇
  2019年   29篇
  2018年   22篇
  2017年   24篇
  2016年   24篇
  2015年   18篇
  2014年   29篇
  2013年   43篇
  2012年   54篇
  2011年   73篇
  2010年   32篇
  2009年   40篇
  2008年   55篇
  2007年   62篇
  2006年   51篇
  2005年   58篇
  2004年   47篇
  2003年   38篇
  2002年   43篇
  2001年   11篇
  2000年   15篇
  1999年   11篇
  1998年   7篇
  1997年   12篇
  1996年   6篇
  1995年   13篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   13篇
  1990年   13篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1973年   4篇
  1968年   1篇
  1967年   1篇
排序方式: 共有969条查询结果,搜索用时 156 毫秒
961.
The objective of this study was to compare the structure and properties of flours and starches from whole, broken, and yellowed rice kernels that were broken or discolored in the laboratory. Physicochemical properties including pasting, gelling, thermal properties, and X‐ray diffraction patterns were determined. Structure was elucidated using high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). The yellowed rice kernels contained a slightly higher protein content and produced a significantly lower starch yield than did the whole or broken rice kernels. Flour from the yellowed rice kernels had a significantly higher pasting temperature, higher Brabender viscosities, increased damaged starch content, reduced amylose content, and increased gelatinization temperature and enthalpy compared with flours from the whole or the broken rice kernels. However, all starches showed similar pasting, gelling, thermal properties, and X‐ray diffraction patterns, and no structural differences could be detected among different starches by HPSEC and HPAEC‐PAD. α‐Amylase may be responsible for the decreased amylopectin fraction, decreased apparent amylose content, and increased amounts of low molecular weight saccharides in the yellowed rice flour. The increased amount of reducing sugars from starch hydrolysis promoted the interaction between starch and protein. The alkaline‐soluble fraction during starch isolation is presumed to contribute to the difference in pasting, gelling, and thermal properties among whole, broken, and yellowed rice flours.  相似文献   
962.
Pasting profiles of selected starches were compared by using a Micro Visco‐Amylo‐Graph (MVA) and a Rapid Visco Analyser (RVA). Effects of cooking (heating/cooling) rate and stirring speed on starch pasting properties were examined. The pasting viscosity of a starch suspension (8%, w/w, dsb) was measured at a fast (6°C/min) and slow (1.5°C/min) cooking rate while being stirred at either 75 rpm or 160 rpm. The pasting temperatures (PT) of all starches were higher when measured at the fast cooking rate than those at the slow cooking rate, except for wheat measured by using the RVA. PT was also higher when measured at the slow stirring speed (75 rpm) than at the fast stirring speed (160 rpm) in both RVA and MVA. When stirring speed increased from 75 rpm to 160 rpm, peak viscosity of all starch pastes except potato decreased measured by using the RVA, but increased by using the MVA. In general, amylograms of these starches obtained by using the MVA showed less breakdown, but greater setback viscosity than did that obtained by using the RVA. Differences in starch pasting properties between MVA and RVA, measured at the same cooking and stirring rates, were attributed mainly to the difference in spindle structure.  相似文献   
963.
Structures and properties of starches isolated from different botanical sources were investigated. Apparent and absolute amylose contents of starches were determined by measuring the iodine affinity of defatted whole starch and of fractionated and purified amylopectin. Branch chain-length distributions of amylopectins were analyzed quantitatively using a high-performance anion-exchange chromatography system equipped with a postcolumn enzyme reactor and a pulsed amperometric detector. Thermal and pasting properties were measured using differential scanning calorimetry and a rapid viscoanalyzer, respectively. Absolute amylose contents of most of the starches studied were lower than their apparent amylose contents. This difference correlated with the number of very long branch chains of amylopectin. Studies of amylopectin structures showed that each starch had a distinct branch chain-length distribution profile. Average degrees of polymerization (dp) of amylopectin branch chain length ranged from 18.8 for waxy rice to 30.7 for high-amylose maize VII. Compared with X-ray A-type starches, B-type starches had longer chains. A shoulder of dp 18–21 (chain length of 6.3–7.4 nm) was found in many starches; the chain length of 6.3–7.4 nm was in the proximity of the length of the amylopectin crystalline region. Starches with short average amylopectin branch chain lengths (e.g., waxy rice and sweet rice starch), with large proportions of short branch chains (dp 11–16) relative to the shoulder of dp 18–21 (e.g., wheat and barley starch), and with high starch phosphate monoester content (e.g., potato starch) displayed low gelatinization temperatures. Amylose contents and amylopectin branch chain-length distributions predominantly affected the pasting properties of starch.  相似文献   
964.
The structural features of rice starch that may contribute to differences in the functionality of three long‐grain rice cultivars were studied. Dried rough rice samples of cultivars Cypress, Drew, and Wells were analyzed for milling quality, grain physical attributes, and starch structures and physicochemical properties. Drew was lower in head rice yield and translucency and higher in percentage of chalky grains compared with Cypress and Wells. Apparent amylose content (21.3–23.1%), crude protein (8.3–8.6%), and crude fat (0.48–0.64%) of milled rice flours were comparable, but pasting properties of rice flours as measured by viscoamylography, as well as starch iodine affinity and thermal properties determined by differential scanning calorimetry were different for the three cultivars. Drew had higher peak, hot paste, and breakdown viscosities, and gelatinization temperature and enthalpy. Molecular size distribution of starch fractions determined by high‐performance size‐exclusion chromatography showed that the three samples were similar in amylose content (AM) (20.0–21.8%) but differed in amylopectin (AP) (64.7–68.3%) and intermediate material (IM) (10.9–13.5%). Drew had highest AP and lowest IM contents, whereas Cypress had the lowest AP and highest IM contents. High‐performance anion‐exchange chromatography of isoamylase‐debranched starch indicated that the AP of Drew was lower in A and B1 chains but higher in B2, B3, and longer chains.  相似文献   
965.
Some stress response-related genes have been identified in Ustilaginoidea virens, but it is not clear whether and how defects of stress responses affect the pathogenesis processes of U. virens. In this study, we identified a general stress response factor UvWHI2 as a homolog of Saccharomyces cerevisiae Whi2 in U. virens. The relative expression level of UvWhi2 was significantly up-regulated during infection, suggesting that UvWHI2 may be involved in pathogenesis. Furthermore, knockout of UvWhi2 showed decreased mycelial growth, increased conidiation in the potato sucrose medium and a defect in pathogenicity. In addition, the RNA-Seq and phenotypic analysis showed that UvWHI2 was involved in response to oxidative, hyperosmotic, cell wall stress and nutrient limitation. Further studies revealed that the defects of stress responses of the ΔUvwhi2 mutant affected the formation of secondary spores on the nutrient limited surface and the rice surface, resulting in a significant reduction of pathogenicity of U. virens. Our results suggest that UvWHI2 is necessary for fungal growth, stress responses and the formation of secondary spores in U. virens. In addition, the defects of stress responses can affect the formation of secondary spores on the rice surface, and then compromise the pathogenicity of U. virens.  相似文献   
966.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   
967.
A series of cross‐linked (0, 0.014, 0.018, 0.024, and 0.028% POCl3, dry starch basis) hydroxypropylated (8%) corn starches were extruded using a Leistritz micro‐18 co‐rotating extruder. Process variables included moisture, barrel temperature, and screw design. Differential scanning calorimetry and X‐ray diffraction studies showed the level of starch crystallinity decreased with increasing severity of extrusion conditions. Pasting properties of the extruded starches were examined using a Rapid Visco Analyser. Pasting profiles of starches extruded at different conditions displayed different hot paste viscosity and final viscosity. Increasing starch moisture content during extrusion and level of cross‐linking increased starch viscosity (P < 0.0001), whereas increasing extrusion temperature and shear decreased starch viscosity (P < 0.0001). Interactions were found between level of cross‐linking and screw design and between extrusion temperature and starch moisture content (P < 0.0001).  相似文献   
968.
Flours and starches from rough rice dried using different treatment combinations of air temperature (T) and relative humidity (RH) were studied to better understand the effect of drying regime on rice functionality. Rough rice from cultivars Bengal and Cypress were dried to a moisture content of ≈12% by three drying regimes: low temperature (T 20°C, RH 50%), medium temperature (T 40°C, RH 12%), and high temperature (T 60, RH 17%). Head rice grains were processed into flour and starch and evaluated for pasting characteristics with a Brabender Viscoamylograph, thermal properties with differential scanning calorimetry, starch molecular‐size distribution with high‐performance size‐exclusion chromatography (HPSEC), and amylopectin chain‐length distribution with high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Lower head rice and starch yields were obtained from the batch dried at 60°C which were accompanied by an increase in total soluble solids and total carbohydrates in the pooled alkaline supernatant and wash water used in extracting the starch. Drying regime caused no apparent changes on starch molecular‐size distribution and amylopectin chain‐length distribution. Starch fine structure differences were due to cultivar. The pasting properties of flour were affected by the drying treatments while those of starch were not, suggesting that the grain components removed in the isolation of starch by alkaline‐steeping were important to the observed drying‐related changes in rice functionality.  相似文献   
969.
The structural features of starch were examined to better understand the causes of variability in rice quality resulting from nighttime air temperature (NTAT) incidence during kernel development. Starch samples were isolated from head rice of four cultivars (Bengal, Cypress, LaGrue, and XL723) field‐grown in four Arkansas locations (Keiser, Pine Tree, Rohwer, and Stuttgart) in 2009 and 2010. Average NTATs recorded during the grain‐filling stages of rice reproductive growth in the four locations were 3.0–8.4°C greater in 2010 than 2009. Elevated NTATs altered the deposition of starch in the rice endosperm. Means pooled across cultivars and locations showed that amylose content was 3.1% (percentage points) less for the 2010 sample set. The elevated NTATs in 2010 resulted in a decrease in the percentage of amylopectin short chains (DP ≤ 18) and a corresponding increase in the percentage of long chains (DP ≥ 19) by an average of 1.3% (percentage points). The greater NTATs in 2010 also produced greater starch paste peak, final, and breakdown viscosities, whereas setback and total setback viscosities decreased. Changes in paste viscosity were highly correlated with the changes in the proportion of amylose and amylopectin. Onset gelatinization temperature was greater by 3.5°C, gelatinization enthalpy by 1.3 J/g, and relative crystallinity by 1.5% (percentage points) for the 2010 sample set. Changes in gelatinization parameters and granule relative crystallinity were highly correlated with the changes in amylopectin chain‐length distribution. Year × cultivar × location interaction effects were statistically insignificant, indicating that the four cultivars evaluated all showed some degree of susceptibility to the effects of temperature incidence during kernel development, regardless of the growing location.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号