首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
林业   1篇
基础科学   1篇
  12篇
综合类   1篇
农作物   5篇
水产渔业   8篇
畜牧兽医   11篇
园艺   5篇
植物保护   10篇
  2023年   1篇
  2021年   2篇
  2019年   4篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   11篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
排序方式: 共有54条查询结果,搜索用时 0 毫秒
51.
52.
This study was conducted to assess the role of increasing N supply in enrichment of whole grain and grain fractions, particularly the endosperm, with Zn and Fe in wheat. The endosperm is the most widely consumed part of wheat grain in many countries. Plants were grown in the greenhouse with different soil applications of N and Zn and with or without foliar Zn spray. Whole grain and grain fractions were analyzed for N, P, Zn and Fe. Increased N supply significantly enhanced the Zn and Fe concentrations in all grain fractions. In the case of high Zn supply, increasing N application enhanced the whole grain Zn concentration by up to 50% and the endosperm Zn by over 80%. Depending on foliar Zn supply, high N elevated the endosperm Fe concentration up to 100%. High N also generally decreased the P/Zn and P/Fe molar ratios in whole grain and endosperm. The results demonstrate that improved N nutrition, especially when combined with foliar Zn treatment, is effective in increasing Zn and Fe of the whole grain and particularly the endosperm fraction, at least in the greenhouse, and might be a promising strategy for tackling micronutrient deficiencies in countries where white flour is extensively consumed.  相似文献   
53.
Bacterial fruit blotch (BFB) of cucurbits, caused by Acidovorax avenae subsp. citrulli, is a serious threat to the watermelon and melon industries. To date, there are no commercial cultivars of cucurbit crops resistant to the disease. Here we assessed the level of tolerance to bacterial fruit blotch of various commercial cultivars as well as breeding and wild lines of melon, using seed-transmission assays and seedling-inoculation experiments. Selected cultivars were also tested in a greenhouse experiment with mature plants. All tested cultivars/lines were found to be susceptible to the pathogen, and most of them showed different responses (relative tolerance vs. susceptibility) in the different assays; however, some consistent trends were found: cv. ADIR339 was relatively tolerant in all tested assays, and cv. 6407 and wild lines BLB-B and EAD-B were relatively tolerant in seed-transmission assays. We also provide evidence supporting a strong correlation between the level of susceptibility of a cultivar/line and the ability of the pathogen to adhere to or penetrate the seed. To the best of our knowledge, this is the first attempt to assess melon cultivars/lines for bacterial fruit blotch response.  相似文献   
54.
Increasing zinc (Zn) concentration of cereal grains is a global challenge to alleviate Zn deficiency‐related health problems in humans caused by low dietary Zn intake. This study investigated the effects of soil‐ and foliar‐applied nitrogen (N) and Zn fertilizers on grain Zn accumulation of durum wheat (Triticum durum) grown on a Zn‐deficient soil. In addition, localization of Zn and protein within durum wheat grain was studied by using Bradford reagent for protein and dithizone (diphenyl thiocarbazone) for Zn. Grain Zn concentration was greatly enhanced by soil or foliar applications of Zn. When Zn supply was adequately high, both soil and foliar N applications improved grain Zn concentration. Consequently, there was a significant positive correlation between grain concentrations of Zn and N, when Zn supply was not limiting. Protein and Zn staining studies showed co‐localization of Zn and protein within grain, particularly in the embryo and aleurone. Results indicate that N and Zn fertilization have a synergistic effect on grain Zn concentration. Possibly, increasing N supply contributes to grain Zn concentration by affecting the levels of Zn‐chelating nitrogenous compounds or the abundance of Zn transporters. Our results suggest that nitrogen management can be an effective agronomic tool to improve grain Zn concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号