首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   4篇
林业   29篇
农学   5篇
  62篇
综合类   10篇
农作物   13篇
水产渔业   21篇
畜牧兽医   86篇
园艺   3篇
植物保护   37篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   12篇
  2014年   14篇
  2013年   27篇
  2012年   17篇
  2011年   25篇
  2010年   14篇
  2009年   8篇
  2008年   24篇
  2007年   18篇
  2006年   13篇
  2005年   19篇
  2004年   8篇
  2003年   6篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有266条查询结果,搜索用时 88 毫秒
81.
In the traditional shifting cultivation system practiced by the Karen people in northern Thailand, the effects of burning on the content of extractable organic matter, microbial biomass, and N mineralization process of the soils were studied. Five plots (5×5 m2 quadrat) with 0, 10, 20, 50, and 100 Mg ha-1 of slashed materials were arranged and burned. Ten to 20 Mg ha-1 of slashed biomass corresponded to the amount commonly burned by the Karen people. During the burning process, the soil temperature at the depth of 2.5 cm in the 100 Mg ha-1 plot almost evenly increased to 300°C while the temperature in the 10 to 50 Mg ha-1 plots increased with large variations from 50 to 300°C. Burning caused a conspicuous increase in the contents of organic C and (organic + mineral)-N extracted at room temperature and a simultaneous decrease in the contents of microbial biomass C and N, especially in the soil of the 100 Mg ha-1 plot. In the rainy season, the values of the changes induced by burning reverted to the values recorded before burning, except for the microbial biomass in the 100 Mg ha-1 plot, which still remained lower. Based on an incubation experiment, N mineralization rate was higher in the soils taken just after burning, especially in the 100 Mg ha-1 plot, than in the soils taken during the rainy season. However, the soil in the 100 Mg ha-1 plot was considered to have the lowest ability to supply mineral N among the soils in the rainy season. Burning of 10 to 20 Mg ha-1 biomass corresponding to the values recorded in Karen peoples' shifting cultivation system was more compatible with soil ecology in terms of N supply at the initial stage of crop growth and of microbial biomass recovery during the rainy season, compared to the burning of 100 Mg ha-1 biomass corresponding to the value recorded in a natural forest. Thus, the shifting cultivation system implemented by the Karen people can be considered to be a well-balanced agricultural system.  相似文献   
82.
The water dynamics and budget in soil-plant ecosystems under dry farming in northern Kazakhstan were investigated for two consecutive years from autumn in 1998 to the end of the cropping season in 2000. In total, 12 plots were established at the experimental farm of Barayev Kazakh Research and Production Center of Grain Farming, Shortandy, and the soil moisture content up to the 90 cm depth was measured several times throughout the period. In spite of snow management during the winter time, in which parallel snow rows were developed in order to accumulate additional snowfall between the rows, the increase in the soil moisture content at the time of thawing widely ranged from -40 to 74 mm in 1999 and from -6 to 84 mm in 2000, respectively. Monitoring of the soil temperature revealed that, in the plots after fallow, a higher moisture content in the frozen subsurface soil layer was responsible for the slow thawing there, resulting in slower water percolation from the overlying layers of the profile and 0n water loss through enhanced evaporation and possible surface runoff. After thawing, the soil moisture content decreased throughout the cropping season, except during several rainfall events. The evapotranspiration was estimated to range between 194 and 259 mm during the cropping season. The bNonmass and yield of wheat at harvest time were linearly correlated with the estimated evapotranspiration, indicating that crop production here was mostly determined by the amounts of available water. The initial soil moisture content accounted for 27 to 52% of the total evapotranspiratiou. In the summer fallow plots, 39 to 104 mm more water accumulated in 1999 and 100 to 119 mm in 2000 than in the cropped plots, respectively. Comparison of the water budgets during the pre-cropping and cropping seasons in the plots under fallow and cropping revealed that both summer fallow and snow management could increase the soil moisture content up to approximately 100 mm, but that the benefit of snow management would be occasionally canceled by the effect of the summer fallow. Given the possibly adverse effects of the summer fallow on enhanced decomposition of soil organic matter, we recommend that snow management should be the main approach for capturing water in the studied plots rather than the summer fallow practice. Further studies should be carried out to determine whether soil and /or topographical conditions are more effective for individual water-capturlng management and also are more suitable from economic and environmental viewpoints.  相似文献   
83.
Low molecular weight (LMW) organic compounds in soil solution are easily biodegradable and could fuel respiration by soil microorganisms. Our main aim was to study the mineralization kinetics of monosaccharides using 14C-radiolabelled glucose. Based on these data and the soil solution concentrations of monosaccharides, we evaluated the contribution of monosaccharides to basal respiration for a variety of tropical forest soils. Further, the factors controlling the mineralization kinetics of monosaccharides were examined by comparing tropical and temperate forest soils. Monosaccharides comprised on average 5.2 to 47.7% of dissolved organic carbon in soil solution. Their kinetic parameters (V max and KM ), which were described by a single Michaelis-Menten equation, varied widely from 11 to 152?nmol?g?1?h?1 and 198 to 1294?µmol?L?1 for tropical soils, and from 182 to 400?nmol?g?1?h?1 and 1277 to 3150?µmol?L?1 for temperate soils, respectively. The values of V max increased with increasing microbial biomass-C in tropical and temperate soils, while the KM values had no correlations with soil biological or physicochemical properties. The positive correlation between V max values and microbial biomass-C indicates that microbial biomass-C is an essential factor to regulate the V max values in tropical and temperate forest soils. The biodegradation kinetics of monosaccharides indicate that the microbial capacity of monosaccharide mineralization far exceeds its rate at soil solution concentration. Monosaccharides in soil solution are rapidly mineralized, and their mean residence times in this study were very short (0.4–1.9?h) in tropical forests. The rates of monosaccharide mineralization at actual soil solution concentrations made up 22–118% of basal respiration. Probably because of the rapid and continuous production and consumption of monosaccharides, monosaccharide mineralization is shown to be a dominant fraction of basal respiration in tropical forest soils, as well as in temperate and boreal forest soils.  相似文献   
84.
Wind erosion is a major contributor to desertification in the Sahel. Although three effective countermeasures for wind erosion (i.e. ridging, mulching with post-harvest crop residue, and windbreaks) have been proposed, they are not practical for Sahelian farmers. Therefore, we designed a new land management practice, termed the “Fallow Band System,” which can be used for both controlling wind erosion and improving soil fertility and crop production. This method does not impose additional expense and labor requirements on Sahelian farmers who are economically challenged and have limited manpower. The objective of this study was to evaluate the effects of this system on wind-erosion control and soil-fertility improvement. We conducted field experiments at the International Crops Research Institute for the Semi-Arid Tropics West and Central Africa and showed that (i) a fallow band can capture 74% of wind-blown soil particles and 58% of wind-blown coarse organic matter, which suggests that it can effectively control wind erosion, (ii) the amount of soil nutrients available for crops in a former fallow band was increased by the decomposition of trapped soil materials containing considerable amounts of nutrients, and (iii) the amount of soil water available for crops in a former fallow band was increased by the trapped wind-blown soil materials through improvement of rainwater infiltration into surface soil. These results lead to the conclusion that the “Fallow Band System” can be useful for preventing desertification and improving soil fertility in the Sahel, West Africa.  相似文献   
85.
We lack an understanding of nitrogen (N) cycles in tropical forests of Africa, although the environmental conditions in this region, such as soil type, vegetation, and climate, are distinct when compared with other tropical forests. Herein, we simultaneously quantified N fluxes through precipitation, throughfall, and 0-, 15-, and 30-cm soil solutions, as well as litterfall, in two forests with different soil acidity (Ultisols at the MV village (exchangeable Al3+ in 0–30 cm, 126 kmolc ha–1) and Oxisols at the AD village (exchangeable Al3+ in 0–30 cm, 59.8 kmolc ha–1)) over 2 years in Cameroon. The N fluxes to the O horizon via litterfall plus throughfall were similar for both sites (MV and AD, 243 and 273 kg N ha–1 yr–1, respectively). Those values were remarkably large relative to other tropical forests, reflecting the dominance of legumes in this region. The total dissolved N flux from the O horizon at the MV was 28 kg N ha–1 yr–1, while it was 127 kg N ha–1 yr–1 mainly as NO3-N (~80%) at the AD. The distinctly different pattern of N cycles could be caused by stronger soil acidity at the MV, which was considered to promote a superficial root mat formation in the O horizon despite the marked dry season (fine root biomass in the O horizon and its proportion to the 1-m-soil profile: 1.5 Mg ha–1 and 31% at the MV; 0.3 Mg ha–1 and 9% at the AD). Combined with the published data for N fluxes in tropical forests, we have shown that Oxisols, in combination with N-fixing species, have large N fluxes from the O horizon; meanwhile, Ultisols do not have large fluxes because of plant uptake through the root mat in the O horizon. Consequently, our results suggest that soil type can be a major factor influencing the pattern of N fluxes from the O horizon via the effects of soil acidity, thereby determining the contrasting plant–soil N cycles in the tropical forests of Africa.  相似文献   
86.
It is desirable to increase the flavonoid contents of postharvest vegetables since flavonoids play a beneficial role in human health promotion. In the present study, we show that postharvest vegetables increasingly produced flavonoids when irradiated with light near the absorption wavelength of flavonoids in the plant. Three-day exposure to UV-B for 5 min, 98 μmol m?2 s?1 per day, increased the contents of jaceidin in spinach, kaempherol glycoside in radish sprout, apigenin glycosides in parsley, and isovitexin in Indian spinach after 6 days of storage in a refrigerator, compared to the contents in plants without irradiation. Six days of storage of unripe green strawberry under green light for 5 min, 98 μmol m?2 s?1 per day, enabled them to mature and turn red, accompanied by 3.5-fold increased contents of pelargonidin. Elucidation of the mechanism in parsley found the stimulating expression of the flavonoid synthesis gene, PAL, C4H, 4CL, CHS, and FNS, 6 h after exposure to single irradiation with UV-B for 5 min, and the higher expression was maintained for 24 h. After 3 days irradiation during 6 days of storage, parsley did not show adverse changes in the contents of ascorbic acid, β-carotene, chlorophyll, and moisture.  相似文献   
87.
Evaluation of carbon dynamics is of great concern worldwide in terms of climate change and soil fertility. However, the annual CO2 flux and the effect of land management on the carbon budget are poorly understood in Sub-Saharan Africa, owing to the relative dearth of data for in situ CO2 fluxes. Here, we evaluated seasonal variations in CO2 efflux rate with hourly climate data in two dry tropical croplands in Tanzania at two sites with contrasting soil textures, viz. clayey or sandy, over four consecutive crop-cultivation periods of 40 months. We then: (1) estimated the annual CO2 flux, and (2) evaluated the effect of land management (control plot, plant residue treatment plot, fertilizer treatment plot, and plant residue and fertilizer treatment plot) on the CO2 flux and soil carbon stock at both sites. Estimated annual CO2 fluxes were 1.0–2.2 and 0.9–1.9 Mg C ha?1 yr?1 for the clayey and sandy sites, respectively. At the end of the experiment, crop cultivation had decreased the surface soil carbon stocks by 2.4 and 3.0 Mg C ha?1 (soil depth 0–15 cm) at the clayey and sandy sites, respectively. On the other hand, plant residue application (7.5 Mg C ha?1 yr?1) significantly increased the surface soil carbon stocks, i.e., 3.5–3.8 and 1.7–2.1 Mg C ha?1 (soil depth 0–15 cm) at the clayey and sandy sites, respectively, while it also increased the annual CO2 fluxes substantially, i.e., 2.5–4.0 and 2.4–3.4 Mg C ha?1 yr?1 for the clayey and sandy soils, respectively. Our results indicate that these dry tropical croplands at least may act as a carbon sink, though the efficiency of carbon accumulation was substantially lower in sandy soil (6.8–8.4%) compared to clayey soil (14.0–15.2%), possibly owing to higher carbon loss by leaching and macro-faunal activity.  相似文献   
88.
The single recessive gene, nsv, which confers resistance against Melon necrotic spot virus (MNSV), has recently been used to develop virus-resistant melon cultivars in Japan. However, the Chiba isolate of MNSV, a common isolate in Japan, infected resistant cultivars when inoculated melon plants were grown at 15°C. Viral RNAs accumulated in protoplasts from resistant cultivars at both 15 and 20°C. Mechanical inoculation of the cotyledons caused MNSV to spread throughout the leaves at 15°C, but not at 20°C. These results support our novel hypothesis that a temperature-sensitive inactivation of disease resistance genes occurs at the nsv locus in melon cultivars with the resistance gene grown at temperatures below 20°C. The first and second authors contributed equally to this research.  相似文献   
89.
90.
Use of nitrogen (N) fertilizer is underway to increase in Sub-Saharan Africa (SSA). The effect of increasing N rates on ammonia (NH3) volatilization—a main pathway of applied-N loss in cropping systems—has not been evaluated in this region. In two soils (Alfisols, ALF; and Andisols, AND) with maize crop in the East African highlands, we measured NH3 volatilization following urea broadcast at six rates (0–150 kg N ha?1) for 17 days, using a semi-open static chamber method. Immediate irrigation and urea deep placement were tested as mitigation treatments. The underlying mechanism was assessed by monitoring soil pH and mineral N (NH4+ and NO3?) concentrations. More cumulative NH3-N was volatilized in ALF than in AND at the same urea-N rate. Generally, higher urea-N rates increased proportional NH3-N loss (percent of applied N loss as NH3-N). Based on well-fitted sigmoid models, simple surface urea application is not recommended for ALF, while up to 60 kg N ha?1 could be adopted for AND soils. The susceptibility of ALF to NH3 loss mainly resulted from its low pH buffering capacity, low cation exchange capacity, and high urease activity. Both mitigation treatments were effective. The inhibited rise of soil pH but not NH4+ concentration was the main reason for the mitigated NH3-N losses, although nitrification in the irrigation treatment might also have contributed. Our results showed that in acidic soils common to SSA croplands, proportional NH3-N loss can be substantial even at a low urea-N rate; and that the design of mitigation treatments should consider the soil’s inherent capacity to buffer NH3 loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号