首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8770篇
  免费   3596篇
  国内免费   1篇
林业   298篇
农学   481篇
基础科学   7篇
  1766篇
综合类   293篇
农作物   230篇
水产渔业   2625篇
畜牧兽医   5208篇
园艺   56篇
植物保护   1403篇
  2023年   21篇
  2022年   24篇
  2021年   171篇
  2020年   519篇
  2019年   1089篇
  2018年   942篇
  2017年   983篇
  2016年   986篇
  2015年   852篇
  2014年   868篇
  2013年   1082篇
  2012年   594篇
  2011年   686篇
  2010年   679篇
  2009年   315篇
  2008年   389篇
  2007年   234篇
  2006年   265篇
  2005年   257篇
  2004年   258篇
  2003年   243篇
  2002年   230篇
  2001年   101篇
  2000年   122篇
  1999年   29篇
  1998年   22篇
  1997年   29篇
  1996年   27篇
  1995年   19篇
  1994年   27篇
  1993年   21篇
  1992年   14篇
  1991年   16篇
  1990年   10篇
  1989年   10篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   14篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   9篇
  1978年   12篇
  1977年   9篇
  1975年   8篇
  1973年   8篇
  1970年   10篇
  1969年   12篇
  1966年   10篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
971.
972.
973.
974.
Balanced plant nutrition is essential to achieve high yields of canola (Brassica napus L.) and get the best economic return from applied fertilizers. A field study was conducted at nine site‐years across eastern Canada to investigate the effects of nitrogen (N), sulfur (S) and boron (B) fertilization on canola nutrient uptake, nutrient balance, and their relationship to canola yields. The factorial experiment consisted of four N rates of 0 (N0), 50 (N50), 100 (N100), and 150 (N150) kg ha?1, two S rates of 0 (S0) and 20 (S20) kg ha?1, and three B treatments of 0 (B0), 2 kg ha?1 at preplant (B2.0P), and 0.5 kg B ha?1 foliar‐applied at early flowering stage (B0.5F). Each site‐year used the same experimental design and assigned treatments in a randomized complete block design with four replications. Fertilizer S application greatly improved seed yields at six out of nine site‐years, and the highest N use efficiency was in the N150+S20 treatment. Sulfur application generally increased seed S concentration, seed S removal, and plant total S uptake, while B fertilization mainly elevated straw B concentration and content, with minimal effect on seed yields. At the early flowering stage, plant tissue S ranged from 2.2 to 6.6 mg S g?1, but the N : S ratio was over or close to the critical value of 12 in the N150+S0 combination at five site‐years. On average across nine site‐years, canola reached a plateau yield of 3580 kg ha?1 when plants contained 197 kg N ha?1, 33 kg S ha?1 and 200 g B ha?1, with a seed B content of 60 g B ha?1. The critical N, S, and B values identified in this work and their potential for a posteriori nutrient diagnosis of canola should be useful to validate fertilizer requirements for canola production in eastern Canada.  相似文献   
975.
Wettability parameters determined for individual soils often show a considerable variation depending on the kind of sample (aggregated or homogeneous material) and the method used. To investigate the causes of this variation, we assessed wettability of both intact and crushed aggregates and bulk soil using different methods. Wettability of intact aggregates was characterized by a modified technique where the specific infiltration rates of water and a completely wetting liquid were used to define a repellency index. Contact angles were determined on crushed aggregates and bulk soil using the Wilhelmy plate and capillary rise methods. The repellency index was found to be sensitive to slight differences in wettability and was in good agreement with Wilhelmy plate contact angles. Contact angles measured with the capillary rise method showed a strong deviation from those determined with the Wilhelmy plate method. This can be ascribed to the underlying assumptions of the capillary rise method (i.e. cylindrical and parallel capillaries) resulting in an over‐estimation of contact angle, particularly for the small‐sized particle fraction because of the impact of inertia and pore structure. No significant differences were found between intact and crushed aggregates whereas the bulk soil was slightly more water‐repellent, probably because of a somewhat larger organic carbon content. We conclude that the contact angle determined by the Wilhelmy plate method and the repellency index are appropriate parameters for characterizing soil water repellency because they detected small changes in wettability over a wide range extending from subcritical water repellency to hydrophobicity.  相似文献   
976.
In Brazil, most Eucalyptus stands have been planted on Cerrado (shrubby savanna) or on Cerrado converted into pasture. Case studies are needed to assess the effect of such land use changes on soil fertility and C sequestration. In this study, the influence of Cerrado land development (pasture and Eucalyptus plantations) on soil organic carbon (SOC) and nitrogen (SON) stocks were quantified in southern Brazil. Two contrasted silvicultural practices were also compared: 60 years of short‐rotation silviculture (EUCSR) versus 60 years of continuous growth (EUCHF). C and N soil concentrations and bulk densities were measured and modelled for each vegetation type, and SOC and SON stocks were calculated down to a depth of 1 m by a continuous function. Changes in SOC and SON stocks mainly occurred in the forest floor (no litter in pasture and up to 0.87 kg C m?2 and 0.01 kg N m?2 in EUCSR) and upper soil horizons. C and N stocks and their confidence intervals were greatly influenced by the methodology used to compute these layers. C/N ratio and 13C analysis showed that down to a depth of 30 cm, the Cerrado organic matter was replaced by organic matter from newly introduced vegetation by as much as 75–100% for pasture and about 50% for EUCHF, poorer in N for Eucalyptus stands (C/N larger than 18 for Eucalyptus stands). Under pasture, 0–30 cm SON stocks (0.25 kg N m?2) were between 10 and 20% greater than those of the Cerrado (0.21 kg N m?2), partly due to soil compaction (limit bulk density at soil surface from 1.23 for the Cerrado to 1.34 for pasture). Land development on the Cerrado increased SOC stocks in the 0–30 cm layer by between 15 and 25% (from 2.99 (Cerrado) to 3.86 (EUCSR) kg C m?2). When including litter layers, total 0–30 cm carbon stocks increased by 35% for EUCHF (4.50 kg C m?2) and 53% for EUCSR (5.08 kg C m?2), compared with the Cerrado (3.28 kg C m?2), independently of soil compaction.  相似文献   
977.
The protective impact of aggregation on microbial degradation through separation has been described frequently, especially for biotically formed aggregates. However, to date little information exists on the effects of organic‐matter (OM) quantity and OM quality on physical protection, i.e., reduced degradability by microorganisms caused by physical factors. In the present paper, we hypothesize that soil wettability, which is significantly influenced by OM, may act as a key factor for OM stabilization as it controls the microbial accessibility for water, nutrients, and oxygen in three‐phase systems like soil. Based on this hypothesis, the first objective is to evaluate new findings on the organization of organo‐mineral complexes at the nanoscale as one of the processes creating water‐repellent coatings on mineral surfaces. The second objective is to quantify the degree of alteration of coated surfaces with regard to water repellence. We introduce a recently developed trial that combines FTIR spectra with contact‐angle data as the link between chemical composition of OM and the physical wetting behavior of soil particles. In addition to characterizing the wetting properties of OM coatings, we discuss the implications of water‐repellent surfaces for different physical protection mechanisms of OM. For typical minerals, the OM loading on mineral surfaces is patchy, whereas OM forms nanoscaled micro‐aggregates together with metal oxides and hydroxides and with layered clay minerals. Such small aggregates may efficiently stabilize OM against microbial decomposition. However, despite the patchy structure of OM coating, we observed a relation between the chemical composition of OM and wettability. A higher hydrophobicity of the OM appears to stabilize the organic C in soil, either caused by a specific reduced biodegradability of OM or indirectly caused by increased aggregate stability. In partly saturated nonaggregated soil, the specific distribution of the pore water appears to further affect the mineralization of OM as a function of wettability. We conclude that the wettability of OM, quantified by the contact angle, links the chemical structure of OM with a bundle of physical soil properties and that reduced wettability results in the stabilization of OM in soils.  相似文献   
978.
Based on recent findings in the literature, we developed a process‐oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co‐action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo‐mineral interactions for OM stabilization in the passive pool is well‐known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site‐ and horizon‐specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo‐mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo‐mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool.  相似文献   
979.
With this topical issue, we present the work of the Priority Program 1090 of the German Research Foundation (“Deutsche Forschungsgemeinschaft DFG”): “Soils as a source and sink for CO2 – mechanisms and regulation of organic matter stabilisation in soils”. This introduction gives an overview on the sites investigated and the major research approaches, including a glossary of major terms used in the field of soil organic matter research. We point out the advantages of integration of data from a broad field of different soil‐science disciplines and the progress achieved by application and combination of new analytical methods describing the quality and turnover of soil organic matter.  相似文献   
980.
Four wild berry species, Amelanchier alnifolia, Viburnum trilobum, Prunus virginiana, and Shepherdia argentea, all integral to the traditional subsistence diet of Native American tribal communities, were evaluated to elucidate phytochemical composition and bioactive properties related to performance and human health. Biological activity was screened using a range of bioassays that assessed the potential for these little-known dietary berries to affect diabetic microvascular complications, hyperglycemia, pro-inflammatory gene expression, and metabolic syndrome symptoms. Nonpolar constituents from berries, including carotenoids, were potent inhibitors of aldose reductase (an enzyme involved in the etiology of diabetic microvascular complications), whereas the polar constituents, mainly phenolic acids, anthocyanins, and proanthocyanidins, were hypoglycemic agents and strong inhibitors of IL-1beta and COX-2 gene expression. Berry samples also showed the ability to modulate lipid metabolism and energy expenditure in a manner consistent with improving metabolic syndrome. The results demonstrate that these berries traditionally consumed by tribal cultures contain a rich array of phytochemicals that have the capacity to promote health and protect against chronic diseases, such as diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号