首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17291篇
  免费   50篇
  国内免费   1篇
林业   3686篇
农学   1311篇
基础科学   137篇
  2799篇
综合类   766篇
农作物   2115篇
水产渔业   1806篇
畜牧兽医   1718篇
园艺   1113篇
植物保护   1891篇
  2021年   14篇
  2020年   15篇
  2019年   24篇
  2018年   2756篇
  2017年   2726篇
  2016年   1199篇
  2015年   89篇
  2014年   47篇
  2013年   58篇
  2012年   847篇
  2011年   2179篇
  2010年   2128篇
  2009年   1268篇
  2008年   1358篇
  2007年   1612篇
  2006年   93篇
  2005年   135篇
  2004年   145篇
  2003年   189篇
  2002年   88篇
  2001年   55篇
  2000年   76篇
  1999年   32篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   12篇
  1992年   29篇
  1991年   15篇
  1990年   19篇
  1989年   17篇
  1988年   29篇
  1987年   17篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1977年   4篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   6篇
  1967年   1篇
  1963年   1篇
  1960年   1篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
991.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   
992.

Purpose

Remediate metal contamination is a fundamental step prior to reclaim oil sands tailing ponds, and copper (Cu(II)) is the most abundant metal in the tailings water or oil sands process-affected water (OSPW). Biochars produced at four pyrolysis conditions were evaluated for sorption of Cu(II) in synthetic OSPW to explore different biochar potentials in removing Cu(II) from the contaminated water.

Materials and methods

Pine sawdust biochars pyrolyzed at 300 and 550 °C with and without steam activation were investigated by batch sorption experiments. Isotherm and kinetic studies were conducted to compare the sorption capacities of the four biochars and to examine potential mechanisms involved.

Results and discussion

For all the biochars, Langmuir and pseudo-second order models were the best-fit for isotherm and kinetic studies, respectively. According to the Langmuir parameters, the maximum adsorption capacities of the biochars produced at 550 °C were around 2.5 mg Cu(II)?g?1, which were 30-folds higher than those produced at 300 °C. However, steam activation did not cause any significant difference in the biochars’ sorption performance. The kinetic study suggested that chemisorption involving valence forces was the limiting factor of the sorption. In addition, ion exchange and precipitation were likely the primary mechanisms for Cu(II) sorption which outweigh complexation with functional groups on the biochars’ surface.

Conclusions

Pine sawdust biochar produced at 550 °C without steam activation could be utilized as a sustainable and cost-effective material to remove Cu(II) from the OSPW.
  相似文献   
993.

Purpose

The purpose of this study was to determine the first-order rate constants and half-lives of aerobic and anaerobic biomineralization of atrazine in soil samples from an agricultural farm site that had been previously used for mixing pesticide formulations and washing application equipment. Atrazine catabolic genes and atrazine-degrading bacteria in the soil samples were analyzed by molecular methods.

Materials and methods

Biomineralization of atrazine was measured in soil samples with a [U-ring-14C]-atrazine biometer technique in soil samples. Enrichment cultures growing with atrazine were derived from soil samples and they were analyzed for bacterial diversity by constructing 16S rDNA clone libraries and sequencing. Bacterial isolates were also obtained and they were screened for atrazine catabolic genes.

Results and discussion

The soils contained active atrazine-metabolizing microbial communities and both aerobic and anaerobic biomineralization of [U-ring-14C]-atrazine to 14CO2 was demonstrated. In contrast to aerobic incubations, anaerobic biometers displayed considerable differences in the kinetics of atrazine mineralization between duplicates. Sequence analysis of 16S rDNA clone libraries constructed from the enrichment cultures revealed a preponderance of Variovorax spp. (51 %) and Schlesneria (16 %). Analysis of 16S rRNA gene sequences from pure cultures (n?=?12) isolated from enrichment cultures yielded almost exclusively Arthrobacter spp. (83 %; 10/12 isolates). PCR screening of pure culture isolates for atrazine catabolic genes detected atzB, atzC, trzD, trzN, and possibly atzA. The presence of a complete metabolic pathway was not demonstrated by the amplification of catabolic genes among these isolates.

Conclusions

The soils contained active atrazine-metabolizing microbial communities. The anaerobic biometer data showed variable response of atrazine biomineralization to external electron acceptor conditions. Partial pathways are inevitable in soil microbial communities, with metabolites linking into other catabolic and assimilative pathways of carbon and nitrogen. There was no evidence for the complete set of functional genes of the known pathways of atrazine biomineralization among the isolates.
  相似文献   
994.

Purpose

The application of bio-fertilizers is one of the management practices that can help to maintain or increase the content of organic matter (OM) and improve soil fertility in arable soils. While some results have been obtained in relation to the influence of bio-fertilizers on organic matter content, less in known about the fractional composition of humus.

Materials and methods

The aim of this study was to determine the effects of the bio-fertilizer UGmax on soil total organic carbon (TOC), dissolved organic carbon (DOC), and the fractional composition of organic matter (C of humic acids (CHAs), C of fulvic acids (CFAs), and C in humins) in the humus horizon of an arable field. Measurements were taken in 2005 before the application of UGmax and in 2008, 3 years after its application, which was done in 2005, 2006, and 2007. Forty soil samples were taken in 2005 (the control year without UGmax), while 20 samples were taken after UGmax treatment and 20 from the control in 2008. Samples were always collected after the plants were harvested.

Results and discussion

After the 3-year period of the experiment, the TOC content was 6.3 % higher in plots on which UGmax was applied in comparison to the control, while the DOC content was 0.19 percentage points lower after 3 years of bio-fertilizer use as compared to the initial year of the experiment. The contribution of DOC to TOC decreased significantly after the application of UGmax in comparison with the control. The content of CFAs and its contribution in the TOC pools in soil without UGmax was higher at the end of the experiment compared to the beginning, while there was an inverse relationship in the soil with the bio-fertilizer. In comparison with the control, organic matter in the soil treated with UGmax had a higher content of C of humic acids, C in humins, and higher CHAs/CFAs ratio.

Conclusions

We conclude that the use of a bio-fertilizer that increases the stable fractions of organic matter provides evidence of an increase in the soil OM stability. In turn, the contribution of the organic matter fractions that are more resistant to decomposition is crucial for increasing soil carbon sequestration.
  相似文献   
995.

Purpose

Developing routine methods that accurately predict soil nitrogen (N) mineralization is essential for fertilization recommendation; thus, chemical soil testing has received worldwide attention. However, the optimal chemical soil test for predicting soil N mineralization is region specific. This study aimed to determine suitable chemical soil tests for predicting N mineralization in paddy soils of the Dongting Lake region, China.

Materials and methods

Composite surface samples (0–20 cm) of soils (n?=?30) with diverse inherent properties were collected from representative paddy fields across the region. The benchmark indices for soil N mineralization were the net mineralization rate of soil N in a 112-day anaerobic incubation under waterlogged conditions (NMRN112) and N mineralization potential (N o ) estimated using a modified double exponential model. Laboratory-based measurements of soil labile organic N (SLON) were conducted using chemical fractionation methods including 0.01 M NaHCO3 extraction, hot 2 M KCl hydrolysis, phosphate-borate (PB) buffer hydrolysis, acidic KMnO4 oxidation, and alkaline KMnO4 oxidation. These were compared with the benchmark indices to assess their suitability for use as indicators for N mineralization.

Results and discussion

Acidic KMnO4-oxidative organic N (acidic KMnO4-N) and PB buffer-hydrolysable organic N (PBHYDR-N) correlated strongly with NMRN112 and N o (r?=?0.825–0.884, P?<?0.001, n?=?30). Grouping of soils based on soil texture generally provided no improvement in the relationships of chemical soil tests with NMRN112 and N o . Multiple stepwise regression analysis indicated that combining acidic KMnO4-N and PBHYDR-N yielded the best prediction of soil N mineralization, explaining 86.1 and 85.5 % of the variation in NMRN112 and N o , respectively, of the 30 tested paddy soils.

Conclusions

The results of acidic KMnO4-N and PBHYDR-N as indicators for soil N mineralization were promising, and the operations of acidic KMnO4 oxidation and PB buffer hydrolysis procedures are simple and cost-effective. Therefore, a combination of acidic KMnO4-N and PBHYDR-N shows promise in predicting N mineralization in paddy soils of the Dongting Lake region. However, further calibration through field studies is required and the chemical characteristics of acidic KMnO4-N and PBHYDR-N needs to be further clarified.
  相似文献   
996.
The identification of quantitative trait loci (QTL) can be viewed as a subset selection problem. In a simulation study the least absolute selection and shrinkage operator (LASSO) is shown to be a useful and powerful tool for QTL identification. LASSO effects are embedded into a mixed model allowing simultaneous modeling of genetic and experimental effects. This provides the flexibility to model the experiment in conjunction with the power of LASSO QTL identification. Estimation is performed using an approximation to the restricted likelihood and modified Gaussian elimination. The extended mixed model is used to analyze a cattle gene mapping dataset.  相似文献   
997.

Purpose

The El Granero reservoir is the last reservoir of the Rio Conchos before it joins the Rio Grande at the Mexico–USA border. This reservoir, together with the San Marcos reservoir, is located in the arid region of Chihuahua, Mexico. High, naturally occurring radioactivity levels, as well as high arsenic (As) concentrations, have been found in both reservoirs. The main goal of this research was to establish the spatial and temporal distribution of trace and radioactive elements in surface sediments and cores collected from these reservoirs.

Materials and methods

Sediment cores were dated using 210Pb and 137Cs measurements and applying the constant rate of supply (CRS) model. Major, trace, and radioactive elements were determined in surface samples and three sediment cores. Radioactive elements were determined by both alpha and gamma spectrometry. Major and trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) using the EPA 3051a method. Enrichment factors (EF), contamination factors (CF), and pollution load indexes (PLI) were calculated in order to identify the human impact in both reservoirs, whereas the chemical index weathering (CIW) was used to assess differences in the degree of weathering.

Results and discussion

High uranium (U) enrichment (EFs?=?24.9–54.7) was observed in core layers at the San Marcos reservoir, while in surface sediments, this enrichment was lower. The high variability of lead (Pb) and As in sediment cores from the Granero reservoir was attributed to human influence. Arsenic and Pb enrichment differences between entry and exit sediment cores were explained by the filtering capabilities of the elongated shape, the topography, and the presence of plants on the reservoir’s bed. The highest PLI was found at the entrance core of the Granero reservoir.

Conclusions

The natural element concentration levels of As, Pb, and U were established at the Granero reservoir. High EFs for As and Pb suggest an anthropogenic origin of these pollutants at specific time intervals. High U concentrations in the San Marcos area are explained as naturally occurring. The concentrations of As in most of the studied sediments could pose a risk to human health by As ingestion, since they are above the probable effect level (PEL).
  相似文献   
998.

Purpose

The potential heat load and stormwater reduction of the anthropogenic, lightweight soil systems, such as green roofs, are valuable to heat island effect mitigation and to urban water management. Benefits of extensive green roofs, as widely used vegetated roof system with very thin soil layer, could be threatened by temporal changes of the soil structure.

Materials and methods

Green roof raised beds filled with two different anthropogenic soils (artificially constructed stripped topsoil with admixed crushed bricks and a commercial mixture of a technogenic substrate) were built to investigate the benefits of such systems in a temperate climate. These two soils were chosen with the intent to compare their thermal and water regime. One soil is expected to be favorable for hydrological functioning, whereas the other one for the thermal performance. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provide the basis for detailed analysis of a thermal and hydrological regime in green roof raised beds. Moreover, the state of pedogenesis was studied on undisturbed soil samples by means of X-ray computed tomography.

Results and discussion

The water balance of green roof raised beds was calculated for a whole vegetation season and individual rainfall events. Runoff from raised beds was 38 and 63 % of received rainfall. On the basis of a detailed analysis of individual rainfall events, rainfall-runoff dependency was found for both raised beds. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on the period with contrasting conditions in terms of moisture stress. Thermal characteristics of soil substrates result in a highly contrasting diurnal variation of soil temperatures. Analysis of X-ray computed tomography-derived macroporosity profiles reveals significant temporal changes in the soil comprised of the stripped topsoil with admixed crushed bricks.

Conclusions

Both green roof systems were able to reduce heat load of roof construction when comparing with the concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of rainfall reduction mainly depends on soil, vegetation status, and experienced weather patterns. Methods used for non-invasive imaging proved to be beneficial for studying of soil structure changes.
  相似文献   
999.
High nitrogen, especially ammonium, input has been observed in Schichinohe, Aomori Prefecture, northeastern Japan. A monitoring study on precipitation, throughfall, and stream water has been carried out to estimate the stage of nitrogen saturation since 1996. Fifty-two to 70% of nitrogen input in throughfall was retained in forest ecosystems. Nitrate concentration in stream water tended to decrease throughout the study. There was no symptom of nitrogen saturation at Japanese cedar stands in Shichinohe, although high nitrogen input in open bulk has been observed. Ammonium (NH4 +) was retained in the canopy. The ratio of NH4 + input in throughfall to that by open bulk was 0.40 – 0.47. Total inorganic nitrogen input under the canopy amounted 0.68 – 0.72 kmolc ha?1 yr?1 (9.6 – 10.0 kg N ha?1 yr?1). Our results suggests that atmospheric nitrogen input has benefitted the three growth.  相似文献   
1000.
This article examines the practical use of semiparametric models in the analysis of field trials—that is, models with parameterized treatment effects and additive terms derived by a data-driven approach using a locally weighted running line smoother (loess). We discuss graphical methods to identify spatial structure in the data and model selection procedures to choose the degree of smoothing. Once the spatial part of the model has been chosen, hypotheses about the treatment effects may be tested. Semiparametric models are used to analyze two barley field trials exhibiting spatial trends. The first has a single experimental treatment and a row-column design. The second has a split-plot design, and we use a semiparametric model which accounts for the randomization at the different strata of this design. We compare the semiparametric analyses with classical analyses of variance and with alternative spatial models. We find that semiparametric models give a good insight into spatial variation in the field and can improve the precision of parameter estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号