首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7507篇
  免费   3511篇
  国内免费   6篇
林业   268篇
农学   462篇
基础科学   10篇
  1615篇
综合类   207篇
农作物   148篇
水产渔业   2549篇
畜牧兽医   4355篇
园艺   37篇
植物保护   1373篇
  2023年   8篇
  2022年   12篇
  2021年   146篇
  2020年   483篇
  2019年   1035篇
  2018年   907篇
  2017年   957篇
  2016年   953篇
  2015年   830篇
  2014年   817篇
  2013年   1004篇
  2012年   531篇
  2011年   558篇
  2010年   651篇
  2009年   293篇
  2008年   326篇
  2007年   147篇
  2006年   174篇
  2005年   165篇
  2004年   168篇
  2003年   182篇
  2002年   189篇
  2001年   82篇
  2000年   111篇
  1999年   22篇
  1998年   9篇
  1997年   26篇
  1996年   13篇
  1995年   12篇
  1994年   13篇
  1993年   11篇
  1992年   7篇
  1991年   14篇
  1990年   11篇
  1989年   12篇
  1988年   4篇
  1987年   8篇
  1986年   12篇
  1985年   10篇
  1984年   8篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   12篇
  1977年   11篇
  1976年   6篇
  1974年   6篇
  1970年   5篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
81.
Development of new semen cryopreservation techniques improving sperm survival and ensuring availability of viable spermatozoa for a prolonged time‐period after AI is promising tools to reduce sensitivity of timing of AI and enhance overall fertility. The SpermVital® technology utilizes immobilization of bull spermatozoa in a solid network of alginate gel prior to freezing, which will provide a gradual release of spermatozoa after AI. The objective of this study was to compare post‐thaw sperm quality and in vitro sperm survival over time of Norwegian Red bull semen processed by the SpermVital® (SV) technology, the first commercialized production line of SpermVital® (C) and by conventional procedure applying Biladyl® extender (B). Post‐thaw sperm motility was not significantly different between SV, C and B semen (p > .05). However, sperm viability and acrosome intactness were higher for SV than C and B semen (p < .05). Small differences in DNA quality were observed (p < .05). Sperm viability after storage in uterus ex vivo was higher for SV than for C semen (p < .05). Furthermore, sperm survival in vitro over time at physiological temperature was significantly higher for SV semen than C semen as well as B semen during the incubation period of 48 hr (p < .05). In conclusion, the SpermVital® technology is improved and is more efficient in conserving post‐thaw sperm quality and results in higher sperm viability over time in vitro for SV than for C and B semen.  相似文献   
82.
The cryopreservation of testicular tissue is a potential method for preserving male fertility. However, the effect of cryopreservation on bovine calf testicular tissue is scarce. This study investigated the effect of different cryoprotectants on bovine calf testicular tissue at the molecular level. Testicular tissue from ten immature bovine calves (6 months) was collected after slaughter and cryopreserved in an extender containing different concentrations of the following five cryopreservation solutions (CP): bovine serum albumin (BSA) with 5% dimethyl sulfoxide (DMSO), trehalose with 5% DMSO, DMSO and glycerol and ethylene glycol (EG). After 7‐day cryopreservation, the expression levels of three spermatogonial stem cell (SSC)‐related genes, octamer‐4 (OCT4), KIT ligand (MGF/SCF) and kit oncogene (C‐KIT), were investigated by quantitative PCR (qPCR). The cell viability was highest for the tissues preserved with 30 mg/ml BSA (77.82% ± 1.22) and 40 mg/ml trehalose (74.23% ± 1.16) compared with other groups (p < 0.05), and the level of expression of the three genes was highest with 30 mg/ml BSA (p < 0.05). Compared with other CPs, the 30 mg/ml BSA and 40 mg/ml trehalose have the better cryopreserve protection. The 30 mg/ml BSA is the most viable media for the cryopreservation of testicular tissue from cattle.  相似文献   
83.
84.
The most common viral skin problems are discussed in the third article in our equine dermatology series.  相似文献   
85.
86.
This study aimed to evaluate the ability of Piriformospora indica to colonize the root of Chenopodium quinoa and to verify whether this endosymbiont can improve the growth, performance and drought resistance of this species. The study delivered, for the first time, evidence for successful colonization of P. indica in quinoa. Hence, pot experiment was conducted in the greenhouse, where inoculated and non‐inoculated plants were subjected to ample (40%–50% WHC) and deficit (15%–20%WHC) irrigation treatments. Drought adversely influenced the plant growth, leading to decline the total plant biomass by 74%. This was linked to an impaired photosynthetic activity (caused by lower gs and Ci/Ca ratio; stomatal limitation of photosynthesis) and a higher risk of ROS production (enhanced ETR/Agross ratio). P. indica colonization improved quinoa plant growth, with total biomass increased by 8% (controls) and 76% (drought‐stressed plants), confirming the growth‐promoting activity of P. indica. Fungal colonization seems to diminish drought‐induced growth hindrance, likely, through an improved water balance, reflected by the higher leaf ψw and gs. Additionally, stomatal limitation of photosynthesis was alleviated (indicated by enhanced Ci/Ca ratio and Anet), so that the threat of oxidative stress was minimized (decreased ETR/Agross). These results infer that symbiosis with P. indica could negate some of the detrimental effects of drought on quinoa growth, a highly desired feature, in particular at low water availability.  相似文献   
87.
New Rice for Africa (NERICA) is a general name for interspecific rice varieties derived from a cross between the high‐yielding Asian rice (Oryza sativa L.) between locally adapted African rice (Oryza glaberrima Steud.). Eight NERICAs were evaluated for cold tolerance (CT) at the reproductive stage and compared with their O. sativa parents and three Japanese standard rice varieties over 3 years. Cold tolerance was evaluated based on the filled grain ratio (FGR) after cold water irrigation. The FGR was greatly reduced by cold water irrigation. NERICA 1, 2 and 7 had higher FGR (51.9–57.9 %), while NERICA 6, 15 and 16 had lower FGR (6.2–14.5 %). NERICA 1, 2 and 7 were less affected by cold stress, with a 31 % mean reduction in FGR, while NERICA 6, 15 and 16 were greatly affected, with their FGRs being reduced by more than 80 %. NERICA 3 and 4 were moderately affected by cold stress, with about 45 % reduction rate in FGR. FGR significantly influenced the grain weights of the varieties with strong positive correlations (r = 0.83–0.91; P < 0.001), and thus, similar trends in grain weights were observed. Grain weights were reduced by 61.7–96.4 % under cold stress. NERICA 1, 2 and 7 showed significantly better performance than NERICA 3 and 4, while NERICA 6, 15 and 16 performed poorly under cold water irrigation. The Japanese varieties Koshihikari (very tolerant) and Ozora (moderately tolerant) were more affected by cold water irrigation than NERICA 1, 2 and 7. On the basis of the mean reduction rate (%) in FGR under cold stress, the varieties were classified as follows: NERICA 1, 2 and 7 as tolerant; NERICA 3 and 4 as moderately tolerant; and NERICA 6, 15 and 16 as susceptible to cold stress. However, NERICA 7 grain yields were lower under cold stress due to both greatly reduced number of panicles per plant and number of spikelets per panicle. Therefore, NERICA 1 and 2 are suitable candidates for production in the highland regions of East Africa and should be promoted for production.  相似文献   
88.
The effects of various copper (Cu) concentrations on the antioxidative system in the roots of Medicago sativa were explored. The results indicated that the Cu content of the roots reached a value of 854 μg g?1 DW at 10 μm Cu and a value of 4415 μg g?1 DW at 100 μm Cu, suggesting that M. sativa has better ability to tolerate and accumulate Cu than other Cu‐bioaccumulators, and is a potential plant for phytoremediation. Treatment with Cu resulted in a significant increment in the levels of H2O2, O2˙? and OH˙. The reduced form of ascorbate and glutathione reached a peak at 30 μm Cu, and was followed by a sharp depletion to a lower level than that of the control. In contrast, the levels of the oxidised forms of ascorbate and glutathione showed a progressive increment with increasing Cu concentrations, suggesting that the antioxidant system was unable to cope with Cu stress at higher Cu levels. Under the Cu concentrations tested, the activity of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) increased at lower Cu concentrations, and then decreased, reaching a maximum at 30 μm of Cu for APX and GR, at 10 μm for CAT, whereas the activities of guaiacol peroxidase (POD, EC 1.11.1.7) were gradually increased with increasing Cu concentrations. PAGE analysis of superoxide dismutase (SOD, EC 1.1.5.1.1) revealed that one band is a Mn‐SOD and five bands are identified as Cu, Zn‐SOD, whereas Fe‐SOD isoforms were not found in the roots of alfalfa. Cu at 10–100 μm increased the intensity of constitutive isozymes of CAT, APX and POD, whereas it decreased the intensity of isozymes of glucose‐6‐phosphate dehydrogenase (G6PDH, EC 1.1.1.49) significantly. The activities of lipoxygenases (LOX, EC 1.13.11.12) were gradually augmented with increasing Cu concentrations, demonstrating that LOXs are probably involved in production of lipid hydroperoxides and superoxide anion. There was a continuous and pronounced enhancement in the activity of esterase (EST, EC 3.1.1.1) in roots treated with 10–30 Cu μm , whereas EST activity in roots exposed to above 30 μm Cu declined, suggesting that EST plays a protective role under lower Cu concentrations stress.  相似文献   
89.
In Bolivia, one of the world’s most important centres of plant domestication, there is growing awareness of the value of native Andean crops, both for domestic consumption and for market sale – notably the virtually boom‐like consumer demand for quinoa around the world. The southern altiplano of Bolivia, south of Oruro, relies almost purely on the production of quinoa and breeding of llamas, which have also been selected as the two commodities of priority to the government to increase the income of the country. Presently, however, quinoa is facing increasing problems in production, owing to its increasing export market and price. The flat areas around the salt desert of the southern altiplano, previously characterized by natural vegetation fed by the llamas, are being increasingly sown with quinoa, hence transformed into deserts, because intensive cultivation methods make the soil loose its fertility. Possible solutions to these problems will require extensive efforts in the south, in addition to various strategies, which also include other parts of the Bolivian altiplano and a strengthened focus on other Andean crops.  相似文献   
90.
Viruses in the genus Mastrevirus (family Geminiviridae), including those infecting sugarcane, have natural geographical ranges almost exclusively restricted to Africa and the Indian Ocean islands off the African coast. Only sugarcane white streak virus (SWSV) in Barbados and sugarcane striate virus (SStrV) in Florida and Guadeloupe are known to infect a few sugarcane varieties in the Western Hemisphere. In this study, PCR assays were developed to detect these two viruses in sugarcane. Five hundred and seventy-one DNA samples from Saccharum species and interspecific hybrids from the Miami World Collection of sugarcane and related grasses were tested for the presence of SStrV and SWSV by PCR. No variety was found infected by SWSV but SStrV was detected in 19 varieties. PCR data were confirmed by sequencing amplified fragments (248 bp). These fragments shared 93%–100% nucleotide identity with SStrV sequences from the GenBank database. SStrV isolates were distributed in six phylogenetic groups, including the four strains of the virus. Most varieties infected by SStrV originated from Asia, thus confirming a previous hypothesis stating that this virus originated from this continent. Absence of SStrV in commercial sugarcane in Florida also suggested that this virus has not been spread in this location, while infected plants have been present for several decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号