首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   14篇
林业   5篇
农学   3篇
基础科学   1篇
  16篇
综合类   3篇
农作物   6篇
水产渔业   23篇
畜牧兽医   41篇
园艺   1篇
植物保护   4篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   8篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1991年   1篇
  1987年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
101.
102.
The effect on true potato seed (TPS) weight of supplemental nitrogen (N) applied during seed development was investigated using crosses DTO-33 × R128.6 (“A” produced in the field) and Atzimba × R128.6 (“B” produced in the field and in a screenhouse). Dry weights of tops and tubers of the mother plants were also measured in the screenhouse. The response to supplemental N (0-240 kg/ha) in 100-TPS weight of cross A and B from the field was positive and linear. In the screenhouse, where higher total N (0-1200 kg/ha) was applied, the responses in 100-TPS weight and dry weight of tops and tubers were curvilinear, with maximum levels at 800, 1000 and 400 kg/ha, respectively. The 100-TPS weight of cross B was 40% higher in the field than in the screenhouse. In the field, increased frequency of supplemental N applications increased 100-TPS weight of large and medium berries of cross B, but had no effect on seed from small berries nor on seed from any berries of cross A. In the screenhouse, increased application frequency decreased tuber dry weight and increased dry weight of tops, but had no effect on 100-TPS weight. It was concluded that supplemental N must be applied during seed development and at higher total levels than those required for optimum tuber yields in order to maximize 100-TPS weight. The lower seed weight from the screenhouse suggests that other environmental factors (e.g., temperature) present during growth of the mother plant can affect the weight of the resultant TPS.  相似文献   
103.
Sweet cherry (Prunus avium L.) has stylar gametophytic self‐incompatibility, which is controlled by the multi‐allelic S‐locus and encompasses the highly polymorphic genes for the S‐ribonuclease (S‐RNase) and S‐haplotype‐specific F‐box (SFB), which are female and male determinants, respectively. The self‐compatible mutant SFB4′ corresponds to an allele variant of SFB4 and presents a frameshift mutation. Even though male‐determinant molecular markers can discriminate between SFB4 and SFB4′ alleles, the methods required are laborious, time‐consuming and expensive, and not suitable for massive analysis and integration into breeding programmes. Our aim was to develop molecular markers for the evaluation of self‐compatibility alleles in sweet cherry, that could be used as a high‐throughput screening strategy to identify SFB4 and SFB4′ alleles, based on a marker for male determinacy. Our results were consistent using primers flanking the mutation responsible for the SFB4′ allele. We designed a specific molecular marker and confirmed it in sweet cherry commercial varieties. This new molecular marker is feasible for self‐compatibility alleles in the male determinant in sweet cherry‐assisted breeding programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号