首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2565篇
  免费   146篇
林业   213篇
农学   295篇
基础科学   31篇
  581篇
综合类   121篇
农作物   196篇
水产渔业   322篇
畜牧兽医   660篇
园艺   75篇
植物保护   217篇
  2023年   35篇
  2022年   67篇
  2021年   83篇
  2020年   101篇
  2019年   122篇
  2018年   157篇
  2017年   151篇
  2016年   120篇
  2015年   88篇
  2014年   118篇
  2013年   235篇
  2012年   179篇
  2011年   159篇
  2010年   136篇
  2009年   95篇
  2008年   108篇
  2007年   103篇
  2006年   87篇
  2005年   59篇
  2004年   52篇
  2003年   47篇
  2002年   34篇
  2001年   41篇
  2000年   35篇
  1999年   32篇
  1998年   18篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   11篇
  1991年   15篇
  1990年   13篇
  1989年   10篇
  1988年   11篇
  1987年   16篇
  1986年   9篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   14篇
  1974年   8篇
  1973年   8篇
  1971年   7篇
  1969年   6篇
  1968年   6篇
排序方式: 共有2711条查询结果,搜索用时 15 毫秒
991.
In this study, Extran (biodegradable surfactant) was used for the preparation of Fe3O4 nanoparticles by microemulsion process to improve removal efficiency of As(III) from aqueous solution. Fe3O4 nanoparticles were characterized by XRD, FTIR, FESEM, TEM, HRTEM, and VSM instrumental techniques. The effect of different parameters such as adsorbent dose, initial As(III) concentration, and solution pH were studied by response surface methodology (RSM) based on Box-Behnken design (BBD). The optimized condition for adsorption of As(III) from aqueous solution was obtained as adsorbent dose of 0.70 mg/g, solution pH of 7.7, and initial As(III) concentration of 33.32 mg/L. In this optimum condition, about 90.5% of As(III) was removed from the aqueous solution. Isotherm studies have been done at optimal condition, and it was observed that the Langmuir isotherm models were fitted well with experimental data having a high correlation coefficient of 0.993. From the Langmuir isotherm data, the maximum adsorption capacity of Fe3O4 nanoparticles was found to be 7.18 mg/g at pH 7.7 in room temperature. This study revealed that Fe3O4 nanoparticles can be used as an efficient, eco-friendly, and effective material for the adsorptive removal of As(III) from aqueous system.  相似文献   
992.
Pot culture experiment was conducted to evaluate the suitability of extractants and to determine the critical limit of boron (B) in soil and mustard plant in Inceptisols of Varanasi. Twenty-one bulk soil collected from different locations were used for growing mustard. Five extractants, namely hot water, hot 0.01molar (M) calcium chloride (CaCl2), 0.01M CaCl2 + 0.05 M mannitol, 1.0 M ammonium acetate (NH4OAC) and 0.05 M hydrochloric acid (HCl), were assessed by correlating the amount of extractable B in untreated and B fertilizer-treated soil with Bray’s per cent yield, plant tissue B concentration and B uptake by mustard. Similarly, correlation coefficients of the B extracted by different extractants and soil properties were calculated. The suitability of B extracted by different extractants was in the order of hot 0.01M CaCl2 (HCC-B) > hot water (HW-B) > 1.0 M NH4OAC (AA-B) > 0.05M HCl (HA-B) > 0.01M CaCl2 + 0.05M mannitol (CCM-B). The critical limits of extractable B in soil as determined by the graphical procedure were 0.54, 0.60, 0.36, 0.45 and 0.45 mg kg?1 and the statistical procedures were 0.54, 0.60, 0.38, 0.46 and 0.48 mg kg?1 with HW-B, HCC-B, CCM-B, AA-B and HA-B, respectively. Soil containing available B below the critical limit responded to B fertilization.  相似文献   
993.
A field experimentation was conducted during 2009-2011 at CSK Himachal Pradesh Agricultural University, Palampur, India characterized with wet-temperate climate and acid Alfisol soil having medium available phosphorus content. The study aimed at bio-fortification and quality enhancement of okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system through arbuscular mycorrhizal fungi (AMF) (Glomus mosseae) at varying inorganic phosphorus (50, 75, and 100% soil-test-based recommended P dose) and irrigation regimes (40 and 80% available water capacity) in a Himalayan acid Alfisol. The results revealed that AMF and inorganic P significantly enhanced the concentrations and uptake of various primary [nitrogen (N), phosphorus (P), and potassium (K)]; secondary [calcium (Ca)]; and micronutrients [iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), and molybdenum (Mo)] in okra and pea crops. However, effects of varying irrigation regimes were found to be nominal. In okra, AMF inoculation considerably enhanced N, P, K, B, and Mo uptake by 5, 19, 3, 4, and 15%, respectively, over their non-AMF counterparts. Likewise in pea, a higher amount of N (10%), P (26%), K (7%), Fe (7%), Cu (38%), Zn (20%), Mn (4%), B (7%), and Mo (13%) uptake was registered through AMF inoculation over their non-AMF counterparts. Application of soil-test-based P dose from 50% to 100% P also resulted in significant and consistent improvement in N, P, K, B, and Mo uptake both in okra and pea and in Zn, Cu, Mn, and Fe uptake in pea crop. Magnitude of increase in Ca content was to the tune of 13 and 4%, respectively, in okra fruits and pea pods following AMF inoculation, whereas crude protein content enhanced by 4% each in both the crops. Overall, the current study demonstrates the important role of AMF in nutrient enrichment and quality enhancement of okra and pea crops in acid Alfisol, besides considerable reduction in investment on chemical fertilizers. Results of current study suggest that AMF use in Himalayan production systems is of tremendous significance to harvest nutritionally-rich farm produce for Himalayan communities suffering from malnutrition especially anemia and Zn deficiency, and equally to resource-poor Himalayan farmers who ill-afford expensive external inputs.  相似文献   
994.
Boron (B) deficiency is a common factor in light-textured soils causing poor pod filling and yield in large seeded peanut. Field trials were conducted in soils having 0.20–0.45 mg kg?1 available B to find out the effectiveness of commercial-grade B sources in large seeded peanuts. B application induced early flowering, increased pods, yield and yield attributes, shelling and 100-seed weight. Soil application of 2.0 kg B ha?1 as commercial-grade Agricol, Solubor and Borosol increased these parameters to a similar degree as obtained by borax, but were superior over their foliar applications. Similarly, the responses of foliar applications of 1.0 kg B ha?1 as Chemiebor, Solubor and Borosol were more effective in humid areas. However, foliar applications led to scorching of peanut leaves during dry weather. Thus, soil application of 2.0 kg B ha?1 is essential to enhance productivity and pod filling in large seeded peanut.  相似文献   
995.
The wild species in general is considered to be the reservoir of genes especially for biotic and abiotic stresses. In okra, the predominant biotic stresses are yellow vein mosaic disease (YVMD), shoot and fruit borer and leaf hopper. Sixty eight (68) accessions belonging to four wild Abelmoschus species [Abelmoschus caillei (A. Chev.) Stevels, Abelmoschus manihot (L.) Medik., Abelmoschus moschatus (L.) Medik. and Abelmoschus tuberculatus Pal et Singh] and eight okra varieties were characterized and evaluated for phenological characters including biotic stresses under natural epiphytotic condition. The wild species examined consisted of 18 accessions (16 exotic and 2 indigenous) of A. caillei, 29 accessions of A. manihot, 16 accessions of A. moschatus and 5 accessions of A. tuberculatus. All the wild Abelmoschus species exhibited high diversity (as measured by Shannon Diversity Index) for 3 qualitative characters viz. intensity of stem colour, leaf shape, epicalyx shape, 13 quantitative characters and 3 biotic stress parameters. Among the wild species, A. caillei and A. tuberculatus showed maximum and minimum diversity for qualitative characters, respectively. There was significant variation for 19 out of 24 quantitative characters studied. Inter-species diversity pattern as estimated through Ward’s Minimum Variance Dendrogram and Principal Component Analysis revealed clear differentiation among the species with minimum overlapping indicating close association between geographical origins and clustering pattern. Intra-species diversity indicated role of specific adaptation in sub-clustering. Resistance to YVMD was found in accessions belonging to three wild species viz. A. caillei, A. manihot and A. moschatus while resistance to shoot and fruit borer and leaf hopper was found in accessions of all the four wild species. The resistant accessions can further be used for introgressing biotic stress resistance through pre-breeding into cultivated okra species.  相似文献   
996.
Here we discuss the novel application of handheld infrared thermal imagery as a learning tool to help smallholder farmers improve postharvest temperature management. Farmers in the Fiji Islands were trained in using a handheld thermal camera to view a series of on-farm demonstrations highlighting the consequence of poor postharvest practice. We observed that smallholder farmers accurately interpreted thermal imagery and the implication of poor practices. Our results showed thermal imagery has the potential to better communicate fundamental concepts of postharvest management. The availability of a range of iPhone, iPad, and Android platforms also means this technology can be widely accessible.  相似文献   
997.
Heng BC  Das GK  Zhao X  Ma LL  Tan TT  Ng KW  Loo JS 《Biointerphases》2010,5(3):FA88-FA97
Lanthanide nanomaterials are considered a less toxic alternative to quantum dots for bioimaging applications. This study evaluated the cytotoxicity of terbium (Tb)-doped gadolinium oxide (Gd(2)O(3)) and dysprosium oxide (Dy(2)O(3)) nanoparticles exposed to human (BEAS-2B) and mouse (L929) cell lines at a concentration range of 200-2000?μg/ml for 48 h. Two assay methods were utilized-WST-8 assay (colorimetric) based on mitochondrial metabolic activity and Pico-Green assay (fluorescence), which measures total DNA content. The authors' data showed that Tb-doped Gd(2)O(3) nanoparticles were consistently more toxic than Tb-doped Dy(2)O(3) nanoparticles. However, exposure to these nanomaterials caused a decrease in proliferation rate for both cell lines rather than a net loss of viable cells after 48 h of exposure. Additionally, there was some degree of discrepancy observed with the two assay methods. For the mouse L929 cell line, the WST-8 assay yielded consistently lower proliferation rates compared to the Pico-Green assay, whereas the opposite trend was observed for the human BEAS-2B cell line. This could arise because of the differential effects of these nanoparticles on the metabolism of L929 and BEAS-2B cells, which in turn may translate to differences in their postexposure proliferation rates. Hence, the Pico-Green assay could have an advantage over the WST-8 assay because it is not skewed by the differential effects of nanomaterials on cellular metabolism.  相似文献   
998.
Field experiments were conducted in Bhubaneswar, Orissa, India, during the dry season (January–May) in 2008 and 2009 to investigate whether practices of the System of Rice Intensification (SRI), including alternate wetting and drying (AWD) during the vegetative stage of plant growth, could improve rice plants’ morphology and physiology and what would be their impact on resulting crop performance, compared with currently recommended scientific management practices (SMP), including continuous flooding (CF) of paddies. With SRI practices, grain yield was increased by 48% in these trials at the same time, there was an average water saving of 22% compared with inundated SMP rice. Water productivity with AWD-SRI management practices was almost doubled (0.68 g l−1) compared to CF-SMP (0.36 g l−1). Significant improvements were observed in the morphology of SRI plants in terms of root growth, plant/culm height, tiller number per hill, tiller perimeter, leaf size and number, leaf area index (LAI), specific leaf weight (SLW), and open canopy structure. These phenotypic improvements of the AWD-SRI crop were accompanied by physiological changes: greater xylem exudation rate, crop growth rate, mean leaf elongation rate (LER), and higher light interception by the canopy compared to rice plants grown under CF-SMP. SRI plants showed delayed leaf senescence and greater light utilization, and they maintained higher photosynthetic rates during reproductive and grain-filling stages. This was responsible for improvement in yield-contributing characteristics and higher grain yield than from flooded rice with SMP. We conclude that SRI practices with AWD improve rice plants’ morphology, and this benefits physiological processes that result in higher grain yield and water productivity.  相似文献   
999.
Initial spacing and pruning are silvicultural strategies that influence the resource acquisition capabilities of trees. A field study was conducted in the humid tropics of peninsular India to test the assumptions that: (1) high stand density of Acacia mangium induces greater root uptake capacity close to the stem and from the subsoil; and (2) crown pruning stimulates greater root uptake capacity at proximal points. Root activity pattern of two-year-old A. mangium was evaluated as a function of three population densities (1,250, 2,500 and 5,000 stems ha−1), with, and without 50% crown pruning, using 32P soil injection. The label was placed at 25, 50 and 75 cm lateral distances and at 30 and 60 cm depth. Low density stands (1,250 stems ha−1) generally showed higher 32P recovery (< 0.01), which was exaggerated by pruning. Pruned low density stands had 34% root activity at 25 cm, as against 23% for unpruned. The low density stands also showed higher root activity at 75 cm, signifying greater root spread. We suggest that high stem densities favour restricted spread of absorbing roots and may facilitate competitive downward displacement of roots. Pruning the lateral shoots at low stem densities may simulate this to some extent. The net outcome of interactions, however, will depend on trade-offs between stem density and tree management over time.  相似文献   
1000.
This article reports on field experiments with 4 different rotations that are commonly used throughout Haryana in NW India (rice-wheat, cotton-wheat, pearl millet-wheat, cluster bean-wheat), where we assess wheat yield and chapatti quality measures with different crop establishment methods and input of micronutrients. In a series of experiments conducted on farmers’ fields in 2007-2008 and 2008-2009 winter seasons, the addition of micronutrients and sulphur to wheat crops was used alongside the use of a common farmer practice, the use of farmyard manure (FM) and best practice inputs of N-fertilizer (150 kg N ha−1), P-fertilizer (26 kg P ha−1) and K-fertilizer (33 kg K ha−1). The application of FM with the recommended NPK treatment produced 9-13% more grain yield in the rice-wheat rotation when compared with the recommended NPK only treatment. Given that the farm sites used here had low levels of soil P, this may suggest that the recommended rate of 26 kg P ha−1 for the rice-wheat rotation is too low. The addition of FM did not improve any grain quality outcomes at any of the sites. There were no yield responses with S application with any of the rotations but the S input resulted in more wheat protein from all sites (average 8%). The addition of S also gave similar increases in grain hardness and the chapatti score. The inclusion of micronutrients (boron, copper, iron, zinc and manganese) with the recommended NPK treatment did not increase the grain yield at any of the sites when compared with the recommended NPK treatment, and sometimes, but not consistently, gave small responses with protein, grain hardness and chapatti score. In concurrent experiments wheat growth and chapatti quality were compared in zero till and conventionally sown systems, and with and without S fertilizer amendment. Here too there were no grain yield responses to S, and the protein, grain hardness and chapatti score were increased with S addition. Grain yields with zero till and conventional wheat were similar in the rice-wheat system and zero till sowing resulted in small increases in yield at all of the non-rice sites. The grain from the zero till treatments had higher protein (1-3%), grain hardness (3-10%) and chapatti score from all 4 rotations. Zero till has substantial adoption in the rice-wheat districts of Haryana but little farmer awareness and adoption in the areas where the other rotations are used. The data given here show that with zero tillage and an integrated practice of nutrient management farmers in Haryana can maintain grain yields of wheat whilst improving quality outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号