首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   41篇
林业   50篇
农学   27篇
  153篇
综合类   33篇
农作物   32篇
水产渔业   24篇
畜牧兽医   258篇
园艺   14篇
植物保护   48篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   21篇
  2020年   29篇
  2019年   24篇
  2018年   24篇
  2017年   32篇
  2016年   27篇
  2015年   30篇
  2014年   24篇
  2013年   50篇
  2012年   50篇
  2011年   36篇
  2010年   28篇
  2009年   20篇
  2008年   40篇
  2007年   32篇
  2006年   28篇
  2005年   20篇
  2004年   16篇
  2003年   18篇
  2002年   22篇
  2001年   8篇
  2000年   9篇
  1999年   10篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1970年   3篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有639条查询结果,搜索用时 125 毫秒
81.
An infertile mare with hypoplastic ovaries was subjected to cytogenetic analysis. Fluorescence in situ hybridisation (FISH) using the equine X whole chromosome painting probe (WCPP) was carried out on a chromosome preparation obtained from blood lymphocyte culture. The number of analysed spreads was high (235) and in the X chromosome aneuploidy in mosaic form was diagnosed. The karyotype formula was 63,X / 64,XX / 65,XXX. The ratio of the three lines was 15%, 82% and 3%, respectively. The application of the FISH technique with WCPP is discussed.  相似文献   
82.
Alginate, a natural polysaccharide derived from brown seaweed, is finding multiple applications in biomedicine via its transformation through chemical, physical, and, increasingly, enzymatic processes. In this study a novel alginate lyase, AlyDS44, was purified and characterized from a marine actinobacterium, Streptomyces luridiscabiei, which was isolated from decomposing seaweed. The purified enzyme had a specific activity of 108.6 U/mg, with a molecular weight of 28.6 kDa, and was composed of 260 amino acid residues. AlyDS44 is a bifunctional alginate lyase, active on both polyguluronate and polymannuronate, though it preferentially degrades polyguluronate. The optimal pH of this enzyme is 8.5 and the optimal temperature is 45 °C. It is a salt-tolerant alginate lyase with an optimal activity at 0.6 M NaCl. Metal ions Mn2+, Co2+, and Fe2+ increased the alginate degrading activity, but it was inhibited in the presence of Zn2+ and Cu2+. The highly conserved regions of its amino acid sequences indicated that AlyDS44 belongs to the polysaccharide lyase family 7. The main breakdown products of the enzyme on alginate were disaccharides, trisaccharides, and tetrasaccharides, which demonstrated that this enzyme acted as an endo-type alginate lyase. AlyDS44 is a novel enzyme, with the potential for efficient production of alginate oligosaccharides with low degrees of polymerization.  相似文献   
83.
The present study was undertaken to assess the insecticide resistance developed in various field collected population of S. litura and to induce susceptibility by using the synergists. Third-instar larvae collected from three different locations of Kerala viz., Thiruvananthapuram (TVM), Pathanamthitta (PTA) and Alappuzha (ALP) were exposed to conventional insecticides like chlorpyriphos, quinalphos, lambda-cyhalothrin and cypermethrin by leaf dip bioassay and resistance ratios were calculated by using the baseline data generated for respective insecticides using susceptible strain. Resistance ratios recorded were 1965, 840 and 320 against chlorpyriphos, 605, 255 and 59 against quinalphos, 926, 250 and 108 against lambda-cyahlothrin and 2566, 534 and 396 against cypermethrin respectively for TVM, PTA and ALP populations. The effect of selected synergists viz., piperonyl butoxide (PBO), diethyl maleate (DEM) and triphenyl phosphate (TPP) was studied in combination with respective test insecticides against the highly resistant population of S.litura collected from TVM of Kerala. The population was tested with insecticide in combination of the above synergists at different ratios. When PBO, TPP and DEM at ratio of 1:4 were used the synergistic ratio was 8.47, 7.26 and 3.98 for chlorpyriphos, 6.09, 5.26 and 3.05 for quinalphos, 13.37, 4.53 and 7.39 for lambda cyhalothrin and 4.77, 3.36 and 3.40 for cypermethrin respectively. PBO showed highest synergistic activity against both the organophosphates tested followed by DEM and TPP. Highest synergistic activity against synthetic pyrethroids also was shown by PBO, followed by TPP and DEM. The results obtained from the present study revealed that PBO at 1:4 ratio showed higher synergism with the test insecticides against the resistant populations of S.litura and proved to be an effective molecule alternate for breaking the resistance against conventional organophosphates and synthetic pyrethroids.  相似文献   
84.
85.
Journal of Plant Diseases and Protection - Although short-wavelength light and especially UV radiation can induce resistance in plants against herbivorous insects, the optimal wavelengths, light...  相似文献   
86.
Journal of Plant Diseases and Protection - Crown and leather rot of strawberry caused by Phytophthora spp. are major soil diseases of cultivated strawberry...  相似文献   
87.
88.
89.
ABSTRACT

The remediation technologies of soils contaminated with petroleum products are developed in two main directions: the first one encompasses searching for new effective bioagents and the other one explores the ways to activate those microorganisms present in the soil that are capable of degrading oil. The objective of this research was to determine if it is possible to increase the effectiveness of biodegradation of petroleum products by using chemical additives. The soil was supplemented with additives: CuSO4, MnSO4, KMnO4, H2O2, 5% and 10% chemical industry plants sludge, 5% and 10% Stock Company ‘Klaipedos vanduo’ (SC‘KV’) municipal wastewater treatment plants sludge. The data suggest that all the additives statistically significantly stimulated the degradation of diesel fuel (F = 12.01; p = .001) and black oil (F = 9.93; p = .001) compared with the control. It was determined that diesel fuel was degraded the fastest in samples with KMnO4, where efficiency of degradation was 90%, and 88% efficency in samples with 10% chemical industry plants sludge. Black oil was degraded the best in samples, where KMnO4 was added: efficiency of degradation was up to 63%. In the samples with 10% of sewage sludge from chemical industry plant degradation efficiency was 62%.  相似文献   
90.
Three different regeneration systems, viz. regeneration through callus cultures using embryonic explant, direct regeneration using shoot bud/nodal segments as explant and regeneration through cell suspension culture using cotyledonary explant (for the induction of transgenic callus for suspension culture) were evaluated to see their effect on transfer of Cry1A(b) gene to Punica granatum L. cv. Kandhari Kabuli through Agrobacterium mediated transformation. Pre-conditioning and co-cultivation durations had a marked effect on transformation frequency of different explants. Out of different explants used (embryo, shoot bud, and cotyledon) for different regeneration systems cotyledonary explant showed highest putative transformation frequency (13.54%) inducing callus on selective medium for carrying out cell suspension culture to regenerate transgenic shoots. Despite of the highest transformation frequency obtained from the cotyledon explant, the plating efficiency of the transgenic cells generated through the transgenic callus (callus formed from the cotyledonary explant) during cell suspension culture was found to be very low (0.7%). Thus the plating efficiency has also played worth mentioning role in the regeneration of transformants following cell suspension culture. Among the three regeneration systems, regeneration through callus cultures using embryonic explant was found to be best for regeneration of transformants. The highest per cent regeneration of 23.33 was obtained from the putative transgenic embrogenic calli. Successful genetic transformation in the transformed plantlets was confirmed by PCR analysis. The transformation system thus developed is valuable and may be used to produce insect resistant trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号