首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62240篇
  免费   2866篇
  国内免费   42篇
林业   2508篇
农学   1644篇
基础科学   429篇
  6141篇
综合类   14581篇
农作物   2417篇
水产渔业   2343篇
畜牧兽医   31028篇
园艺   641篇
植物保护   3416篇
  2017年   553篇
  2016年   536篇
  2014年   540篇
  2013年   1862篇
  2012年   1202篇
  2011年   1436篇
  2010年   913篇
  2009年   877篇
  2008年   1427篇
  2007年   1389篇
  2006年   1372篇
  2005年   1386篇
  2004年   1318篇
  2003年   1391篇
  2002年   1354篇
  2001年   1493篇
  2000年   1473篇
  1999年   1206篇
  1998年   531篇
  1997年   538篇
  1995年   596篇
  1994年   573篇
  1993年   561篇
  1992年   1309篇
  1991年   1395篇
  1990年   1447篇
  1989年   1486篇
  1988年   1399篇
  1987年   1356篇
  1986年   1400篇
  1985年   1373篇
  1984年   1150篇
  1983年   1005篇
  1982年   718篇
  1981年   688篇
  1980年   644篇
  1979年   1127篇
  1978年   916篇
  1977年   819篇
  1976年   768篇
  1975年   860篇
  1974年   1126篇
  1973年   1063篇
  1972年   1128篇
  1971年   1080篇
  1970年   1022篇
  1969年   874篇
  1968年   710篇
  1967年   844篇
  1966年   693篇
排序方式: 共有10000条查询结果,搜索用时 640 毫秒
981.
The vertical K-sat of a clay layer, occurring between 30 and 60 cm below the soil surface, was measured in situ in early spring at thirteen sites, using large soil columns. Gypsum was used to form a barrier around the column and K-sat values were measured with an infiltrometer in columns that were first attached and then detached from the subsoil. This procedure allows an estimate of the occurrence of large continuous pores, such as vertical worm channels. Highest values were found in tile-drained grassland, followed by grassland with surface drainage only, and by tile-drained arable land. Relatively low K-sat for the silty subsoil, rather than the (high) vertical K-sat for the clay layer, is considered to be responsible for high groundwater tables in the wet season.Undisturbed, large columns were taken to the laboratory and saturated for a period of three months to simulate prolonged swelling after a very wet season, and to measure chloride-breakthrough curves, for characterizing soil-pore continuity. The clay layer, sampled in the surface-drained grassland, showed no significant reduction of K-sat after prolonged swelling, but the one for arable land was reduced. Moreover, flow in the latter occurred through only a few relatively large, continuous pores, whereas a more heterogeneous pore system was found for the column from grassland. The already high K-sat of the clay layer in surface-drained grassland increased as a result of tile drainage. Compaction of the clay layer in tile-drained arable land reduced K-sat well below the level found in surface-drained grassland.  相似文献   
982.
Water and land resource competition and environmental degradation pose difficult questions for resource managers. In particular, the ensuing trade-offs between economic, environmental, and social factors and their spatiotemporal variability must be considered when implementing management policies. This paper describes an integrated modelling toolbox that has been developed for highland catchments – specifically the Mae Chaem catchment in Northern Thailand. This toolbox contains models of crop growth, erosion and rainfall-runoff, as well as household decision and socioeconomic impact models. The approach described advances and complements previous approaches by: considering more complex interactions between land-use decisions and the hydrological cycle; modelling household decisions based on uncertain expectations; and assessing impacts of changes not only on flows and household income, but also on subsistence production and erosion. An example of the types of trade-offs and scenarios that can be assessed using the integrated modelling toolbox is also presented. This demonstrates that for the scenarios presented, the magnitude and direction of impacts simulated by the model is not dependent on climate. Further testing of the model is demonstrated in a companion paper. Overall, the plausibility of the model is shown.  相似文献   
983.
Summary This paper reviews research carried out at the Griffith Laboratory in Australia over the last decade on techniques for, and results of, observations of roots in irrigated clay soils. Our results emphasise the adaptability of root systems to rootzone conditions. Experiences with techniques for observing roots non-destructively in the field and both non-destructively and destructively in lysimeters are described. We concluded that the minirhizotron technique, applied in the field, was unreliable under our conditions. Horizontal root observation tubes were used in lysimeters to measure root length density (RLD) and to assess whether roots were clumped together or randomly distributed. Destructive sampling and measurement of RLD was used to establish a theoretical relationship between root intercept counts along the tubes and RLD. The application of image analysis to both destructive and non-destructive sampling in the lysimeters is outlined. The non-destructive lysimeter studies showed that roots were significantly clumped. Analysis of root intercept and root hole counts on the faces of sample cubes taken from the lysimeters showed root distribution was anisotropic over the whole soil profile for both safflower and wheat. There were many more roots and root holes present in the sampled soil cubes than was indicated by independent sampling for washed out RLD. Safflower appeared to have a faster turnover of roots than did wheat or maize. Lysimeters, equipped with horizontal root observation tubes, enabled studies to be made of many factors affecting root growth. Soils affect where and how fast roots grow, although there is also a strong species interaction. For example, soybean roots proliferated above a fresh water table in one soil but not in another; wheat had little tendency to proliferate above the water table in either soil. In wet soils, roots cease to grow once soil oxygen levels decrease below 10 mg O2 l soil -1 . This level should form the basis for soil drainage criteria. In drying soils, roots will grow successively into soil regions containing soil water: the level of adaptation being determined by soil conditions, crop growth stage and level of evaporative demand. The methods of root observation used in our studies have given quantitative assessment of root distribution. However, further research is needed to link horizontal and vertical root distribution and root adaptation more strongly to crop development and soil conditions.  相似文献   
984.
Summary Different soils are known to affect the amount and distribution of both available water and roots. Optimising irrigation water use, especially when shallow water-tables are present requires accurate knowledge of the root zone dynamics. This study was conducted to determine the effect of two soil types on root growth, soil water extraction patterns, and contributions of a water-table to crop evaporation (E). Two weighing lysimeters (L1 and L2) with undisturbed blocks of soil were used. The soil in L1 had higher hydraulic conductivity and lower bulk density than that in L2. Well watered conditions were maintained by irrigation for the first 110 days from sowing (DFS). Root length density (RLD) was calculated from observations made in clear acrylic tubes installed into the sides of the lysimeters. Volumetric soil water contents were measured with a neutron probe. A water-table (EC = 0.01 S m-1) was established 1 m below the soil surface 18 DFS. RLD values were greater in L1 than L2 at any depth. In L1, maximum RLD values (3 × 104 m m-3) were measured immediately above the water-table at physiological maturity (133 DFS). In L2, maximum RLD values (1.5 × 104 m m-3) were measured at 0.42 m on 120 DFS and few roots were present above the water-table. From 71 to 74 DFS, 55 and 64% of E was extracted from above 0.2 m for L1 and L2, respectively. In L2, extraction was essentially limited to the upper 0.4 m, while L1 extraction was to 0.8 m depth. Around 100 DFS the water-table contributed 29% (L1) and 7% (L2) of the water evaporated. This proportion increased rapidly as the upper soil layers dried following the last substantial irrigation 106 DFS. Over the whole season the water-table contributed 24% in L1 and 6.5% in L2 of total E.  相似文献   
985.
The design and management of drainage systems should consider impacts on drainage water quality and receiving streams, as well as on agricultural productivity. Two simulation models that are being developed to predict these impacts are briefly described. DRAINMOD-N uses hydrologic predictions by DRAINMOD, including daily soil water fluxes, in numerical solutions to the advective-dispersive-reactive (ADR) equation to describe movement and fate of NO3-N in shallow water table soils. DRAINMOD- CREAMS links DRAINMOD hydrology with submodels in CREAMS to predict effects of drainage treatment and controlled drainage losses of sediment and agricultural chemicals via surface runoff. The models were applied to analyze effects of drainage intensity on a Portsmouth sandy loam in eastern North Carolina. Depending on surface depressional storage, agricultural production objectives could be satisfied with drain spacings of 40 m or less. Predicted effects of drainage design and management on NO3-N losses were substantial. Increasing drain spacing from 20 m to 40 m reduced predicted NO3-N losses by over 45% for both good and poor surface drainage. Controlled drainage further decreases NO3-N losses. For example, predicted average annual NO3-N losses for a 30 m spacing were reduced 50% by controlled drainage. Splitting the application of nitrogen fertilizer, so that 100 kg/ha is applied at planting and 50 kg/ha is applied 37 days later, reduced average predicted NO3-N losses but by only 5 to 6%. This practice was more effective in years when heavy rainfall occurred directly after planting. In contrast to effects on NO3-N losses, reducing drainage intensity by increasing drain spacing or use of controlled drainage increased predicted losses of sediment and phosphorus (P). These losses were small for relatively flat conditions (0.2% slope), but may be large for even moderate slopes. For example, predicted sediment losses for a 2% slope exceeded 8000 kg/ha for a poorly drained condition (drain spacing of 100 m), but were reduced to 2100 kg/ha for a 20 m spacing. Agricultural production and water quality goals are sometimes in conflict. Our results indicate that simulation modeling can be used to examine the benefits of alternative designs and management strategies, from both production and environmental points-of-view. The utility of this methodology places additional emphasis on the need for field experiments to test the validity of the models over a range of soil, site and climatological conditions.  相似文献   
986.
Development and population growth in Latin American countries with steep slope farming are likely to further increase pressures on water and land resources. A methodology was developed for assessing water availability and use under different development pathways at a watershed scale to determine whether water security is a potential problem, and if so, under what conditions it is likely to occur. This methodology makes use of a GIS-based spatial water budget model for simulating stream water availability, water use and stream flow control on a daily basis at a watershed scale. Here, we analysed water availability under three plausible development scenarios for the 3246 ha Cabuyal River watershed in southwest Colombia in the year 2025: Corporate Farming (CF), Ecological Watershed (EW), and Business as Usual (BU). Simulated average river flows at the watershed outlet were, respectively, 874, 796 and 925 l s−1 for the CF, EW and BU scenarios. The contribution of base flow to river flow (base flow index) was on average, 80.8, 85.6 and 77.9%, respectively, for the three scenarios. The watershed had the potential to meet the anticipated increase in water use under each explorative scenario. However, dams were necessary to store irrigation water in the CF scenario, otherwise over 60% of the available water would have been used during the dry season. Such a high figure raises concerns about effects on aquatic and riparian ecology, concentrations of potential contaminants, water reserves for especially low rainfall years, and the watershed resilience to meet temporarily higher water needs during the day. Analyses indicated that current water-use conflicts in the watershed can be resolved if irrigation water supply is separated from drinking water supply. This study helped reduce some of the complexity associated with the interdependencies between land and water resources, the impact of using them, and spatial linkages within the watershed. Results of this study can be used for teaching local stakeholders about basic landscape responses and helping multi-institutional alliances to become proactive and to guide development to the benefit of local communities.  相似文献   
987.
Infiltration characteristics for border strip irrigation at two sites with swelling clay soils were examined. Volume infiltrated was calculated from flow onto the field monitored with flow meters; depth of water in the soil estimated from soil samples taken before and after irrigation; and the advance profile which was used to calculate the volume infiltrated with time. Volume infiltrated was compared with volume of cracks before irrigation.Linear advance and observed crack closing supported the hypothesis that infiltration approached zero after about 10 min. Volume of cracks was less than 20% of the volume infiltrated. Wetting front was 3–10 times greater than depth of observed surface cracks. There was no significant correlation between intake opportunity time and depth of infiltration, but elevation irregularities were related to infiltration.  相似文献   
988.
Landscape Ecology - Widespread changes in forest structure and distribution have been documented in northern Patagonia over the past century. We employed LPJ-GUESS, a dynamic global...  相似文献   
989.
990.
Selection for drought tolerance entails prioritizing plant traits that integrate critical physiological processes occurring during crop growth. Discrimination against 13C (?) in leaflets (?leaflet) and tubers (?tuber) was compared under two water regimes in two potato‐improved varieties selected to maintain yield under drought conditions (Unica and Sarnav) and one drought susceptible European cultivar (Désirée). In the control treatment, soil water content was kept at field capacity over the whole growth cycle, while in the drought treatment water supply was restricted after tuber initiation (50 % of field capacity). Gas exchange and N content per unit leaf area (Narea) as well as ? were assessed at different stages. Sarnav showed the highest tuber yield in both water conditions, suggesting that yield in the water restriction treatment was largely driven by yield potential in this genotype. Higher stomatal conductance (gs) and Narea and lower ?leaflet in well‐watered Sarnav suggested higher photosynthetic capacity. Under water restriction, Sarnav maintained higher gs indicating that carbon diffusion was a key factor for biomass accumulation under water restriction. Our results suggest the use of ? determined after tuber initiation as an indirect selection indicator for tuber yield under both well‐watered and restricted soil water availability conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号