首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   11篇
林业   50篇
农学   6篇
  34篇
综合类   11篇
农作物   10篇
水产渔业   46篇
畜牧兽医   158篇
园艺   2篇
植物保护   15篇
  2023年   1篇
  2022年   6篇
  2021年   16篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   22篇
  2012年   24篇
  2011年   26篇
  2010年   7篇
  2009年   6篇
  2008年   29篇
  2007年   32篇
  2006年   15篇
  2005年   25篇
  2004年   17篇
  2003年   12篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1989年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有332条查询结果,搜索用时 48 毫秒
331.
The production of transparent exopolymer particles (TEP) by four diatoms, Coscinodiscus granii, Eucampia zodiacus, Rhizosolenia setigera, and Skeletonema sp., was examined. Most of the TEP in C. granii (74% of the maximum) were produced during the growth phase. In contrast, most of the TEP in E. zodiacus (73%), R. setigera (74%), and Skeletonema sp. (70%) were produced during the stationary and declining phases. The C. granii TEP production rate was highest in the growth phase, whereas those in E. zodiacus, R. setigera, and Skeletonema sp. were highest in the stationary–decline phase. The TEP concentrations per cell and the cell volume of C. granii were 34.97 ± 4.114 (mean ± SD) ng Xeq./cell (xanthan gum equivalents per cell) and 341.6 ± 56.33 fg Xeq./μm3, and were 23.01 and 4.32 times higher than the values obtained from the other three diatoms, respectively. The results suggest that the mechanisms of TEP production differ with growth stage and diatom species. Therefore, it is likely that the differences in TEP production among the diatom species influence the complexity of TEP dynamics in aquatic environments.  相似文献   
332.
Large highly pathogenic avian influenza (HPAI) outbreaks caused by clade 2.3.4.4e H5N6 viruses occurred in Japan during the 2016–2017 winter. To date, several reports regarding these outbreaks have been published, however a comprehensive study including geographical and time course validations has not been performed. Herein, 58 Japanese HPAI virus (HPAIV) isolates from the 2016–2017 season were added for phylogenetic analyses and the antigenic relationships among the causal viruses were elucidated. The locations where HPAIVs were found in the early phase of the outbreaks were clustered into three regions. Genotypes C1, C5, and C6–8 HPAIVs were found in specific areas. Two strains had phylogenetically distinct hemagglutinin (HA) and non-structural (NS) genes from other previously identified strains, respectively. The estimated latest divergence date between the viral genotypes suggests that genetic reassortment occurred in bird populations before their winter migration to Japan. Antigenic differences in 2016–2017 HPAIVs were not observed, suggesting that antibody pressure in the birds did not contribute to the selection of HPAIV genotypes. In the late phase, the majority of HPAI cases in wild birds occurred south of the lake freezing line. At the end of the outbreak, HPAI re-occurred in East coast region, which may be due to the spring migration route of Anas bird species. These trends were similar to those observed in the 2010–2011 outbreaks, suggesting there is a typical pattern of seeding and dissemination of HPAIV in Japan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号