首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   10篇
林业   12篇
农学   11篇
  28篇
综合类   5篇
农作物   15篇
水产渔业   9篇
畜牧兽医   74篇
园艺   1篇
植物保护   11篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   11篇
  2014年   10篇
  2013年   8篇
  2012年   11篇
  2011年   19篇
  2010年   12篇
  2009年   11篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1933年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
101.
Chili peppers (Capsicum spp.) are widely cultivated food plants that arose in the Americas and are now incorporated into cuisines worldwide. Here, we report a genus-specific starch morphotype that provides a means to identify chili peppers from archaeological contexts and trace both their domestication and dispersal. These starch microfossils have been found at seven sites dating from 6000 years before present to European contact and ranging from the Bahamas to southern Peru. The starch grain assemblages demonstrate that maize and chilies occurred together as an ancient and widespread Neotropical plant food complex that predates pottery in some regions.  相似文献   
102.
Summary During the last decades extensive progress has been achieved in winter barley breeding with respect to both, yield and resistance to fungal and viral diseases. This progress is mainly due to the efficient use of the genetic diversity present within high yielding adapted cultivars and – with respect to resistance – to the extensive evaluation of genetic resources followed by genetic analyses and introgression of respective genes by sexual recombination. Detailed knowledge on genetic diversity present on the molecular level regarding specific traits as well as on the whole genome level may enhance barley breeding today by facilitating efficient selection of parental lines and marker assisted selection procedures. In the present paper the state of the art with respect to virus diseases, i.e. Barley mild mosaic virus, Barley yellow mosaic virus, and Barley yellow dwarf virus is briefly reviewed and first results on a project aiming on a genome wide estimation of genetic diversity which in combination with data on yield and additional agronomic traits may facilitate the detection of marker trait associations and a more efficient selection of parental genotypes are presented. By field tests of 49 two-rowed and 64 six-rowed winter barley cultivars the genetic gain in yield for the period 1970–2003 was estimated at 54.6 kg ha−1 year−1 (r2 = 0.567) for the six-rowed cultivars and at 37.5 kg ha−1 year−1 (r2 = 0.621) for the two-rowed cultivars. Analysis of 30 SSRs revealed a non-homogenous allele distribution between two and six-rowed cultivars and changes of allele frequencies in relation to the time of release. By PCoA a separation between two and six-rowed cultivars was observed but no clear cut differentiation in relation to the time of release. In the two-rowed cultivars an increase in genetic diversity (DI) from older to newly released cultivars was detected.  相似文献   
103.
The breeding companies and laboratories involved in this article cover a wide range of crops grown in the temperate climate zone: small grain cereals, oilseed crops, forage crops, turf, vegetables and potato. Speed and efficiency are becoming increasingly important in variety breeding and doubled haploids (DH) and genetic markers are important biotechnological tools to accelerate materials to market. Collaborative research between universities, research institutions and breeding companies has resulted in the routine use of DH technology and molecular markers in practical breeding of barley, wheat and rapeseed. DH populations have been established not only for barley, wheat and rapeseed, but for rye, oat and triticale, where DH technology is less developed. A driver here is the value of the crop e.g. although wheat is less responsive to DH production the value of the end product makes the effort worthwhile. Simple and rapid DNA extraction methods used in high-throughput marker assisted selection (MAS) systems are essential for routine use of markers. MAS is used both to monitor the presence of genes of interest and also to monitor the genetic background. DH technology in forage, turf and vegetables is still in progress and the practical use of markers in all crops is limited by access to trait linked markers. Collaboration and technology transfer with universities, research institutions and breeding companies is essential for the improvement of both DH protocols in recalcitrant crops and marker technology in all crops.  相似文献   
104.
Jutta Krüger 《Euphytica》1994,77(1-2):1-6
Fifty-six populations of common bean (Phaseolus vulgaris L.) were grown in Pontevedra (Northwestern Spain) in four different environments in order to study their genetic diversity in 18 agronomical traits. All characters showed significant differences among populations, and most of them had significant genotype-environment interactions. Broad-sense heritability for this pool of characters ranged from 0.87 (seed length) to 0.12 (seed yield). Sixteen populations which deserve special attention because of their breeding value for earliness, yield, pod and seed size have been identified.  相似文献   
105.
A novel spirocyclic drimane coupled by two drimane fragment building blocks 2 and a new drimane 1 were identified in mycelia and culture broth of Stachybotrys sp. MF347. Their structures were established by spectroscopic means. This is the first example of spirocyclic drimane coupled by a spirodihydrobenzofuranlactam unit and a spirodihydroisobenzofuran unit; and the connecting position being N-C instead of an N and N connecting unit. Strain MF347 produced also the known spirocyclic drimanes stachybocin A (12) and stachybocin B (11) featured by two sesquiterpene-spirobenzofuran structural units connected by a lysine residue; the known spirocyclic drimanes chartarlactam O (5); chartarlactam K (6); F1839A (7); stachybotrylactam (8); stachybotramide (9); and 2α-acetoxystachybotrylactam acetate (10); as well as ilicicolin B (13), a known sesquiterpene. The relative configuration of two known spirobenzofuranlactams (3 and 4) was determined. All compounds were subjected to biological activity tests. The spirocyclic drimane 2, 11, and 12, as well as the sesquiterpene 13, exhibited antibacterial activity against the clinically relevant methicillin-resistant Staphylococcus aureus (MRSA).  相似文献   
106.
“One strain many compounds” (OSMAC) based approaches have been widely used in the search for bioactive compounds. Introducing stress factors like nutrient limitation, UV-light or cocultivation with competing organisms has successfully been used in prokaryote cultivation. It is known that diatom physiology is affected by changed cultivation conditions such as temperature, nutrient concentration and light conditions. Cocultivation, though, is less explored. Hence, we wanted to investigate whether grazing pressure can affect the metabolome of the marine diatom Porosira glacialis, and if the stress reaction could be detected as changes in bioactivity. P. glacialis cultures were mass cultivated in large volume bioreactor (6000 L), first as a monoculture and then as a coculture with live zooplankton. Extracts of the diatom biomass were screened in a selection of bioactivity assays: inhibition of biofilm formation, antibacterial and cell viability assay on human cells. Bioactivity was found in all bioassays performed. The viability assay towards normal lung fibroblasts revealed that P. glacialis had higher bioactivity when cocultivated with zooplankton than in monoculture. Cocultivation with diatoms had no noticeable effect on the activity against biofilm formation or bacterial growth. The metabolic profiles were analyzed showing the differences in diatom metabolomes between the two culture conditions. The experiment demonstrates that grazing stress affects the biochemistry of P. glacialis and thus represents a potential tool in the OSMAC toolkit.  相似文献   
107.
Lignin is a heterogenous phenolic polymer that plays crucial roles in the development and physiology of vascular plants. However, it needs to be removed from cellulose by toxic and energy-requiring processes for the production of high-quality paper. Therefore, a major biotechnological challenge is to obtain transgenic trees with modified lignin to improve the quality of wood for paper making. Here, we review the results obtained by alterating the expression of genes of the monolignol biosynthesis pathway in trees and the effect of these modifications on the lignin polymer and on pulping. The data reported show that lignin engineering is a promising strategy to improve wood quality for the pulp and paper industry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
108.
109.
Cell cultures of lavender (Lavandula officinalis) were analyzed for the metabolite profile under normal growth conditions and under stress as well as after jasmonic acid treatment. The main compound synthesized was rosmarinic acid, which was also secreted into the culture medium. Different solvent extraction methods at different pH values altered the profile slightly. Anoxic stress induced the synthesis of a cinnamic acid derivative, which was identified as caffeic acid by gas chromatography-mass spectrometry. Caffeic acid was also induced after treatment of the cell cultures with jasmonic acid. Although the antioxidative activity of both compounds, rosmarinic acid and caffeic acid, was confirmed in an assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH), it was demonstrated that both substances have a low cytotoxic potential in vitro using acute myeloid leukemia (HL-60) cells. The potential of the system for finding new bioactive compounds is discussed.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号