首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   1篇
林业   17篇
农学   1篇
  43篇
综合类   15篇
农作物   5篇
水产渔业   5篇
畜牧兽医   38篇
园艺   12篇
植物保护   9篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   13篇
  2011年   8篇
  2010年   6篇
  2009年   8篇
  2008年   14篇
  2007年   12篇
  2006年   6篇
  2005年   8篇
  2004年   8篇
  2003年   10篇
  2002年   9篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
141.
The antioxidant profile of 23 native Andean potato cultivars has been investigated from a human nutrition perspective. The main carotenoid and tocopherol compounds were studied using high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) and a fluorescence detector, respectively, whereas polyphenols (including anthocyanins in colored tubers) were identified by means of both HPLC-mass spectrometry and HPLC-DAD. Antioxidant profiling revealed significant genotypic variations as well as cultivars of particular interest from a nutritional point of view. Concentrations of the health-promoting carotenoids, lutein and zeaxanthin, ranged from 1.12 to 17.69 microg g(-1) of dry weight (DW) and from 0 to 17.7 microg g(-1) of DW, with cultivars 704353 and 702472 showing the highest levels in lutein and zeaxanthin, respectively. Whereas beta-carotene is rarely reported in potato tubers, remarkable levels of this dietary provitamin A carotenoid were detected in 16 native varieties, ranging from 0.42 to 2.19 microg g(-1) of DW. The amounts of alpha-tocopherol found in Andean potato tubers, extending from 2.73 to 20.80 microg g(-1) of DW, were clearly above the quantities generally reported for commercial varieties. Chlorogenic acid and its isomers dominated the polyphenolic profile of each cultivar. Dark purple-fleshed tubers from the cultivar 704429 contained exceptionally high levels of total anthocyanins (16.33 mg g(-1) of DW). The main anthocyanin was identified as petanin (petunidin-3-p-coumaroyl-rutinoside-5-glucoside). The results suggest that Andean potato cultivars should be exploited in screening and breeding programs for the development of potato varieties with enhanced health and nutritional benefits.  相似文献   
142.
143.
Potato tubers were evaluated as a source of antioxidants and minerals for the human diet. A genetically diverse sample of Solanum tuberosum L. cultivars native to the Andes of South America was obtained from a collection of nearly 1000 genotypes using microsatellite markers. This size-manageable collection of 74 landraces, representing at best the genetic diversity among potato germplasm, was analyzed for iron, zinc, calcium, total phenolic, total carotenoid, and total vitamin C contents. The hydrophilic antioxidant capacity of each genotype was also measured using the oxygen radical absorbance capacity (ORAC) assay. The iron content ranged from 29.87 to 157.96 microg g-1 of dry weight (DW), the zinc content from 12.6 to 28.83 microg g-1 of DW, and the calcium content from 271.09 to 1092.93 microg g-1 of DW. Total phenolic content varied between 1.12 and 12.37 mg of gallic acid equiv g-1 of DW, total carotenoid content between 2.83 and 36.21 microg g-1 of DW, and total vitamin C content between 217.70 and 689.47 microg g-1 of DW. The range of hydrophilic ORAC values was 28.25-250.67 micromol of Trolox equiv g-1 of DW. The hydrophilic antioxidant capacity and the total phenolic content were highly and positively correlated (r = 0.91). A strong relationship between iron and calcium contents was also found (r = 0.67). Principal component analysis on the studied nutritional contents of the core collection revealed that most potato genotypes were balanced in terms of antioxidant and mineral contents, but some of them could be distinguished by their high level in distinct micronutrients. Correlations between the micronutrient contents observed in the sample and the genetic distances assessed by microsatellites were weakly significant. However, this study demonstrated the wide variability of health-promoting micronutrient levels within the native potato germplasm as well as the significant contribution that distinct potato tubers may impart to the intake in dietary antioxidants, zinc, and iron.  相似文献   
144.
Managing the spatial distribution of crop and non-crop habitats over landscapes could be used as a means to reduce insect pest densities. In this study, we investigated whether or not landscape characteristics affected the number of codling moths in commercial orchards. To do this, we collected overwintering larvae in 2006 and 2007 in 76 orchards over a 70 km2 area in southeastern France. We analysed variations in the number of larvae using correlation tests and linear models. As independent variables, we took both characteristics of focus orchards (pear vs. apple, organic vs. conventional orchards) and of their surrounding landscape (orchard density and hedgerow network attributes) into account in buffers with widths varying from 50 to 500 m. Although the codling moth is specialised on orchards, the number of codling moths was lower in orchards within a high orchard density area. There was some indication that this effect was mostly due to the density of conventional orchards and thus to the intensity of insecticide treatments. Conversely, we found no particular effect of abandoned or organic orchards. In 2006, the number of codling moths was also significantly lower in a focus orchard when the hedgerow network acted as a protection against the prevailing wind. Finally, major effects of landscape variables on the number of codling moths were observed for distances of less than 150 m from the focus orchards, suggesting that codling moth management should be organised over areas of about 16 ha. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
145.
Soils and crops are particularly vulnerable to climate change and environmental stresses. In many agrosystems, soil biodiversity and ecosystem services provided by soils are under threat from a range of natural and human drivers. Agricultural soils are often subject to agronomic practices that disrupt soil trophic networks and make soils less productive in the long term. In this scenario, sustainable soil use aimed at improving plant/root status, growth and development plays a crucial role for enhancing the biological capacity of agricultural soils. This commentary paper is divided into the following four main sections: (i) the contentious nature of soil organic matter; (ii) soil biological quality/fertility; (iii) soil classification; and, (iv) which agricultural practices can be defined as sustainable? The published literature was analyzed within a holistic framework, with agrosystems considered as living systems where soil, vegetation, fauna and microorganisms co-evolve and are reciprocally influenced. Ultimately, this article will suggest a better stewardship of agricultural soils as a natural capital.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号