首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   23篇
林业   91篇
农学   5篇
  64篇
综合类   12篇
农作物   8篇
水产渔业   4篇
畜牧兽医   19篇
园艺   4篇
植物保护   24篇
  2023年   4篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   10篇
  2017年   11篇
  2016年   12篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   14篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   4篇
  2007年   11篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  1999年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1990年   3篇
  1984年   2篇
  1950年   3篇
  1941年   2篇
  1938年   4篇
  1929年   3篇
  1928年   2篇
  1927年   7篇
  1926年   2篇
  1925年   3篇
  1920年   2篇
  1919年   2篇
  1916年   3篇
  1913年   3篇
  1912年   2篇
  1906年   3篇
  1905年   6篇
  1901年   3篇
  1900年   1篇
  1897年   1篇
  1896年   3篇
  1895年   1篇
  1894年   1篇
  1864年   3篇
排序方式: 共有231条查询结果,搜索用时 31 毫秒
81.
82.
A long‐term field experiment on a Haplic Phaeozem, established 1949 with four levels of potassium (K) supply (5, 69, 133, and 261 kg K ha?1), was analyzed for the interaction between K supply and yield loss of five crop species by water shortage. The crop species were cultivated simultaneously side‐by‐side in the following rotation: potato (Solanum tuberosum L.), silage maize (Zea mays L.), spring wheat (Triticum aestivum L.), beet (Beta vulgaris L.), and spring barley (Hordeum vulgare L.). The treatment with 133 kg K ha?1 supply had a nearly balanced K budget. In the treatments with lower supply, the soil delivered K from its mineral constituents. On the low‐K plots (especially on those with only 5 kg K ha?1), crops suffered yield depressions of nearly all main harvest products (cereal grains, potato tubers, beet storage roots, silage maize) and by‐products (straw, beet leaves) by up to 40.7% of dry matter. Only wheat grains were an exception. Potassium concentrations in the harvested plant parts decreased nearly in parallel to the reduction of their dry matter yields, with the exception of cereal grains, which kept stable concentrations even in the treatment with only 5 kg K ha?1. A comparison of four year‐pairs with differing levels of precipitation in yield‐relevant periods showed an average water shortage‐induced depression of dry matter yields by 19.7% in the main harvest products. The severity of this yield depression was not mitigated by elevated K supply, with the exception of beet leaves, where the dry matter production was stabilized by high K supply. In this crop, the reduction of storage‐root yield was associated with a decrease in harvest index and was therefore obviously caused by an inhibition of assimilate translocation from the leaves into these organs, in contrast to cereals, where water shortage primarily affected dry matter production in vegetative organs. It is concluded that the physiological causes of yield reduction by drought stress and the possibility of its amelioration by K supply differ between plant species and organs.  相似文献   
83.
ABSTRACT: BACKGROUND: The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis. RESULTS: Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment. CONCLUSIONS: The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.  相似文献   
84.
To reduce losses and improve forage use efficiency in dairy farming systems, mass and nutrient flows during silage production have to be measured from the field to feed bunk. However, data on these losses at the farm scale are scarce. Thus, we examined dry‐matter (DM) losses and changes in nutrient concentrations (proximate constituents, nitrogen [N], phosphorus [P]) and energy values (net energy for lactation [NEL]) of silages on three experimental farms from ensiling to feed‐out. The investigated material included forages from permanent grassland and whole‐crop maize that were stored in 64 side‐walled bunker silos. To determine DM losses, the total‐in versus total‐out method was applied. Additionally, the changes in the nutrient concentrations were measured by comparing the concentrations before and after ensiling. Data analyses were carried out by using ANOVA, and the means across groups were compared via multiple contrast tests. On average, the farms had good silage production management. Average values showed a trend towards higher DM losses during the ensiling process with grass (9%) than maize (7%). The N and P concentrations of the silages remained mainly unchanged during the ensiling process, suggesting that the total losses of N and P were also low (<10%). Regarding the fibre fractions, ensiling resulted in a significant reduction in the concentration of amylase‐treated ash‐excluded neutral detergent fibre (aNDFom) for grass (11%) and maize (15%), while ash‐excluded acid detergent fibre (ADFom) was not affected by the ensiling process. These changes resulted in slightly improved energy values in the silages.  相似文献   
85.
The Institute for Strategies and Technology Assessment of the Julius Kühn-Institute operates four different networks: demonstration farms on IPM, reference farms for plant protection, panel pesticide applications and NEPTUN farms. All networks deal with the use of plant protection products in agricultural practice. The latter three also have very similar tasks and are closely interlinked. As a result, outsiders have significant problems distinguishing between those four farm networks and assigning the respective activities to the “right” corresponding network.Therefore, the publication aims at presenting comparatively the tasks and objectives of the various networks and to explain to the reader what are they doing, what are the differences, as well as why and how the establishment of these four different farm networks has come about.  相似文献   
86.
87.
Freely available information on the actual use of chemical plant protection products (PPPs) in agriculture is highly necessary for a number of scientific questions and political discussions. Therefore, since 2000, regular surveys on the use of PPPs have been carried out for the most important agricultural and horticultural crops in Germany (NEPTUN projects). In 2011, they were adjusted to legal framework changes. Since then they are known as PAPA surveys with “PAPA” being an abbreviation for Panel Pesticide Applications. For each crop a network of farms was built up. In each network, the PPP application data are collected annually, anonymized and forwarded to the Julius Kühn-Institute (JKI).All surveys and analyses based on the panel refer to the Federal Republic of Germany. The participating farms are distributed throughout Germany proportionally to the production area per crop.In sugar beet cultivation the results of PAPA surveys show that the plant protection intensity has increased slightly in recent years comparing the PAPA results with the years 2005 to 2010. There are diverse reasons for this development. Difficult-to-control weeds occurred on an increasing acreage in recent years. At the same time, an early appearance of foliar diseases (approximately beginning of July) combined with warm and humid weather during the following weeks leads to the development of the main pathogen causing leaf spot diseases in sugar beet (Cercospora beticola) in many regions. A continuing development of leaf spots increases the need for repeated fungicide applications. A high infestation with aphids was the dominating reason for increased insecticide applications in some years. Additional influences on the treatment index are due to changes in the authorization of PPPs.  相似文献   
88.
89.
90.
During the past years, most biochar studies were carried out on tropical soils whereas perennial field experiments on temperate soils are rare. This study presents a 3-year field experiment regarding the effects of differently produced biochars (pyrolyzed wood, pyrolyzed maize silage, hydrothermal carbonized maize silage) in interaction with digestate incorporation and mineral N fertilizer application on soil C and N, crop yields of winter wheat, winter rye and maize and the quality of winter wheat. Soil C and plant available potassium were found to be significantly positive affected by pyrolyzed wood biochar whereas the latter only in combination with N fertilization. Crop yields of winter wheat, winter rye and maize were not affected by biochar and showed no interaction effects with N fertilizer supply. Wheat grain quality and nutrition contents were significantly affected by biochar application, for example, highest amounts of phosphorus, potassium and magnesium were determined in treatments amended with pyrolyzed maize silage biochar. Biochar induced an improved availability of plant nutrients, which apparently were not yield limiting in our case. These results limit the potentials of biochar for sustainable intensification in agriculture by increasing crop yields for the temperate zones. However, detection of other environmental benefits requires further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号